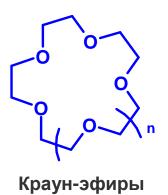
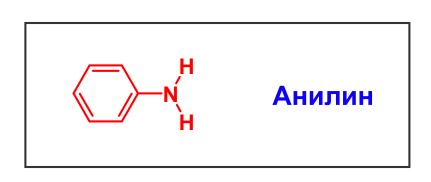
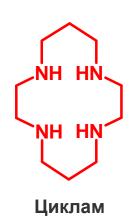


Зимняя конференция молодых ученых по органической химии WSOC - 2016

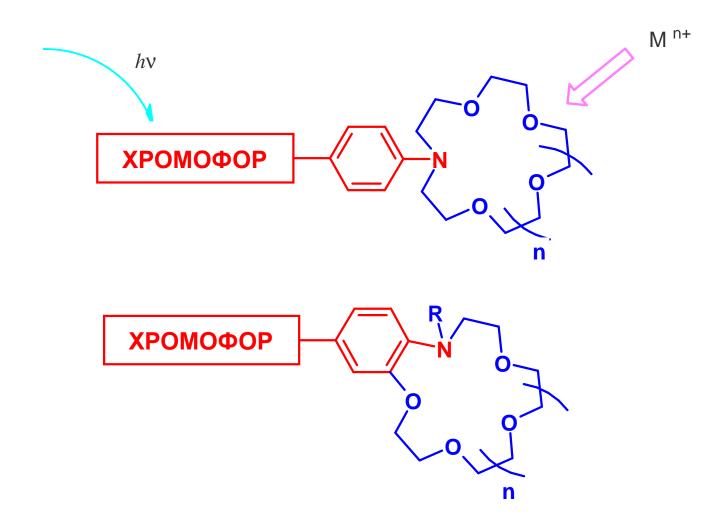



Синтез и комплексообразование фенилаза- и бензоазакраун-эфиров с атомом азота, соединенным с бензольным кольцом


Громов Сергей Пантелеймонович

http://suprachem.photonics.ru; http://www.chem.msu.ru/rus/lab/organic/supra-nano.html

Азакраун-эфиры



Бензоазакраун-эфиры

Фотоактивные азакраун-эфиры

СИНТЕЗ ПРОИЗВОДНЫХ ФЕНИЛАЗАКРАУН-ЭФИРОВ

1. Построение макроцикла из двух фрагментов

2. Ароматическое нуклеофильное замещение и кросс-сочетание

3. Синтез функциональных производных

МЕТОДЫ, ОСНОВАННЫЕ НА КОНДЕНСАЦИИ ДВУХ ФРАГМЕНТОВ

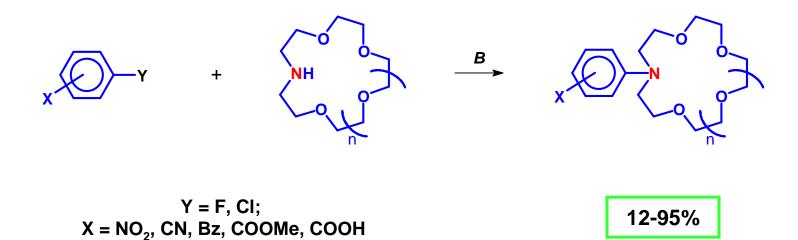
Y = CI, I, TsO, MsO

6-70%

 $B = M_2CO_3$, NaOH, *t*-BuOM, NaH

ЦИКЛОДИАЛКИЛИРОВАНИЕ АНИЛИНОВ

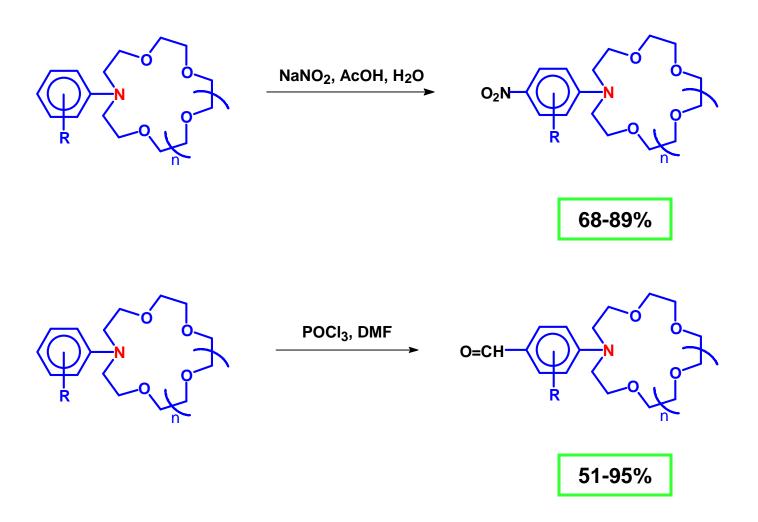
$$Y = CI, I$$


$$Na_2CO_3$$

$$Y = CI, I$$

$$13-51\%$$

ВВЕДЕНИЕ МАКРОЦИКЛИЧЕСКОГО ФРАГМЕНТА ПУТЕМ АРОМАТИЧЕСКОГО НУКЛЕОФИЛЬНОГО ЗАМЕЩЕНИЯ


РЕАКЦИИ КРОСС-СОЧЕТАНИЯ

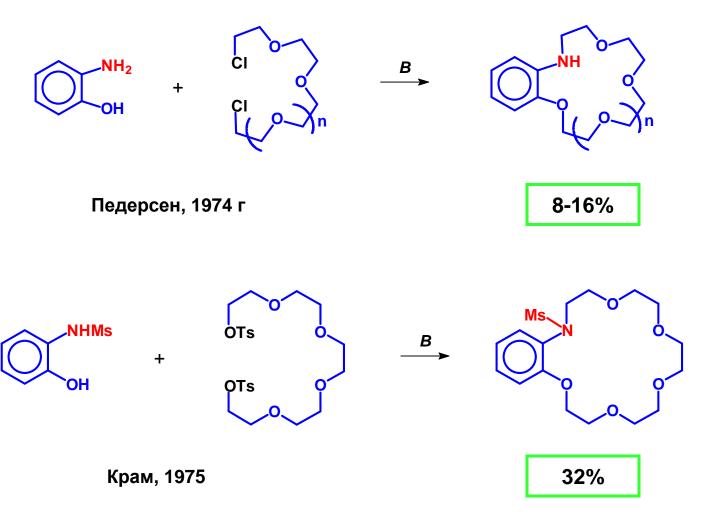
[Pd] = Pd(OAc)₂, Pd(dba)₂, Pd₂(dba)₃

$$L = PPh_3, P(Tol-o)_3, P(t-Bu)_3, \qquad Ph \qquad P(t-Bu)_2, \qquad PCy_2$$

ФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ

СИНТЕЗ ПРОИЗВОДНЫХ БЕНЗОАЗАКРАУН-ЭФИРОВ

1. Построение макроцикла из двух фрагментов


$$\begin{pmatrix} \mathsf{N} & \mathsf{B} \\ \mathsf{+} & \\ \mathsf{A} & \mathsf{B} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathsf{N} & \mathsf{B} \\ \\ \mathsf{A} & \mathsf{B} \end{pmatrix}$$

2. Синтез функциональных производных

$$R$$
 + N R N

КОНДЕНСАЦИЯ ДВУХ ФРАГМЕНТОВ

 $B = NaOH, n-BuOH, H_2O$

ФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ

X = Br (95%), COOH (59%)

ФУНКЦИОНАЛЬНЫЕ ПРОИЗВОДНЫЕ

ТРАНСФОРМАЦИЯ ЦИКЛА ГЕТЕРОЦИКЛОВ

Kost A. N., Gromov S. P., Sagitullin R. S. *Tetrahedron* **1978**, *34*, 2213 (review); Gromov S. P., Kost A. N. *Heterocycles* **1994**, *38*, 1127 (review); Gromov S. P. *Heterocycles* **2000**, *53*, 1607 (review).

ТРАНСФОРМАЦИЯ ЦИКЛА МАКРОГЕТЕРОЦИКЛОВ

РАСКРЫТИЕ МАКРОЦИКЛА В ФОРМИЛБЕНЗОКРАУН-ЭФИРАХ ПОД ДЕЙСТВИЕМ АЛКИЛАМИНА

X = Y = O, S, NMe; n = 0 - 3; R = Me, Et

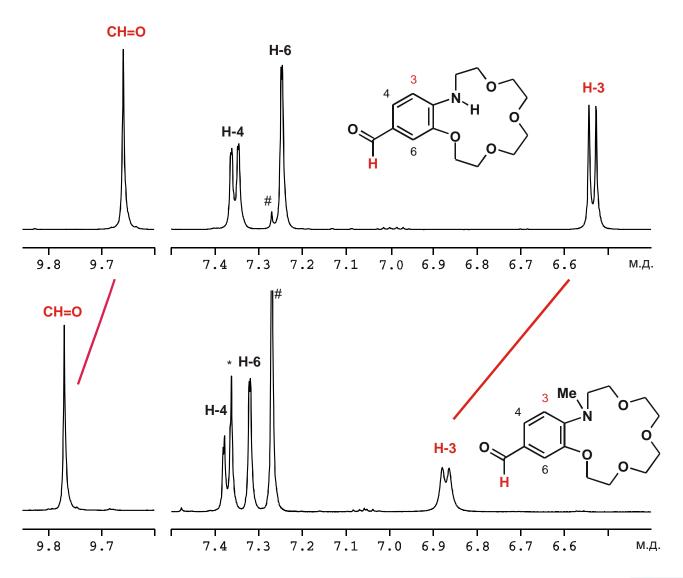
СИНТЕЗ ФОРМИЛБЕНЗОАЗАКРАУН-ЭФИРОВ ИЗ АЗАПОДАНДОВ

n = 0 - 2; M = Li, Na, K, Rb, Cs

СИНТЕЗ ФОРМИЛБЕНЗОАЗАКРАУН-ЭФИРОВ ИЗ АЗАПОДАНДОВ

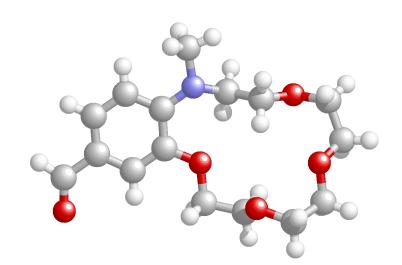
Y = CI, I; n = 0 - 2

Предполагаемые механизмы циклизации


ДЕМЕТИЛИРОВАНИЕ *N*-МЕТИЛБЕНЗОАЗАКРАУН-ЭФИРОВ

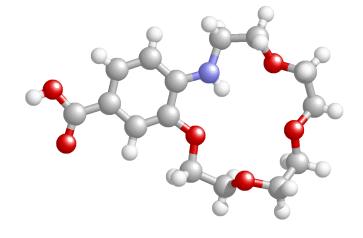
МЕТИЛИРОВАНИЕ БЕНЗОАЗАКРАУН-ЭФИРОВ

Eur. J. Org. Chem. **2003**, 3189; J. Phys. Org. Chem., **2009**, 22, 823.


Спектры ЯМР ¹Н формилбензоазакраун-эфиров

РСА формил-N-метилбензоазакраун-эфира

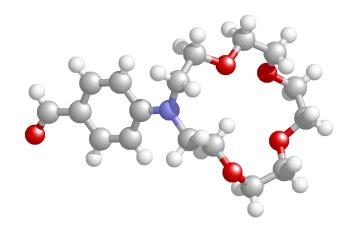
Формил-*N*-метилбензоаза-15-краун-5-эфир



Ориентация НЭП (буквенным символом Е) гетероатомов макроцикла.

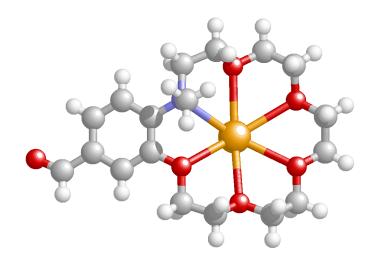
РСА бензоазакраун-эфиров

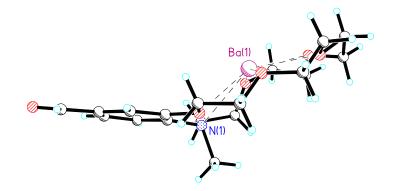
Карбоксибензоаза-15-краун-5-эфир


Формилбензоаза-18-краун-6-эфир

Eur. J. Org. Chem. **2003**, 3189. J. Phys. Org. Chem., **2009**, 22, 823.

РСА формилфенилазакраун-эфира


Формилфенилаза-15-краун-5-эфир



Формилфенилаза-18-краун-6-эфир

Структура комплекса формил-N-метилбензоаза-18-краун-6-эфира с Ва(СІО₄)₂

Комплексообразование краун-эфиров

$$L + M^{m+} \xrightarrow{K_1} (L \cdot M)^{m+}$$

$$(L \cdot M)^{m+} + L \xrightarrow{K_2} (L_2 \cdot M)^{m+}$$

L - краун-эфир, M^{m+} - катион металла или аммония:

 K_1 (M⁻¹) - константа устойчивости комплекса состава 1 (L) : 1(M^{m+});

 K_2 (M⁻¹) - константа устойчивости комплекса состава 2 (L) : 1(M^{m+})

Константы устойчивости комплексов краун-эфиров с перхлоратами металлов, аммония и этиламмония.

Лиганд	$\log K_1 \ (\log K_2)$						
	Na ⁺	K ⁺	Ca ²⁺	Ba ²⁺	NH ₄ ⁺	EtNH ₃ ⁺	
	4.8	3.2 (1.9)	5.6	5.4 (5.1)	2.1	2.4	
OHC (O)	3.5	2.9 (2.5)	4.3	4.4 (4.2)	2.0	2.2	Me N O
OHC OH	3.2	2.2	5.3	4.6 (2.5)	2.0	1.7	OHC ON N
оси-()	1.6	0.6	2.4	1.9	0.7	0.6	OHC-NOO
OHC CO	5.2	3.7	8.4	7.0	4.3	3.8	2 / 0 / n
OHC No. 3	4.8	4.3	8.0	6.8	4.1	3.7	$K_{1\cdot M}^{m+} >> K_{2\cdot M}^{m+}$
OHC OH	3.3	2.8	4.7	4.9	2.5	2.0	
OHC-	3.4	2.3	4.8	4.9	1.9	1.6	

РАСКРЫТИЕ МАКРОЦИКЛА В НИТРОБЕНЗОКРАУН-ЭФИРАХ ПОД ДЕЙСТВИЕМ МЕТИЛАМИНА

$$\begin{array}{c|c}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$$

n = 0 - 2

Стерические эффекты в реакции раскрытия макроцикла нитробензокраун-эфиров под действием аминов

R' = H; R = Me, Et, n-Pr, i-Pr, PhCH₂, PhCHMe, CH₂CH₂OH, CH₂CH₂OH R' = H; R = Me, CH₂CH₂OH

$$\begin{array}{c} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$$

n = 2, 3

СИНТЕЗ НИТРОБЕНЗОАЗАКРАУН-ЭФИРОВ ИЗ АЗАПОДАНДОВ

СТЕРИЧЕСКИЕ ЭФФЕКТЫ В СИНТЕЗЕ НИТРОБЕНЗОАЗАКРАУН-ЭФИРОВ ИЗ АЗАПОДАНДОВ

88-94%

88-98%

R	n	Выходы (%)
Me	1	80
	2	71
Et	1	53
	2	40
Pr ⁿ	1	48
	2	37
PhCH ₂	1	46
	2	34
Pr ⁱ	1	0
	2	0
PhMeCH	1	0

Изв. АН. Сер. хим. **2010**, 1167; *ЖОрХ*, **2011**, *47*, 1081.

Предполагаемый механизм циклизации

$$O_{2}N$$

$$O_{2}N$$

$$O_{2}N$$

$$O_{2}N$$

$$O_{2}N$$

$$O_{2}N$$

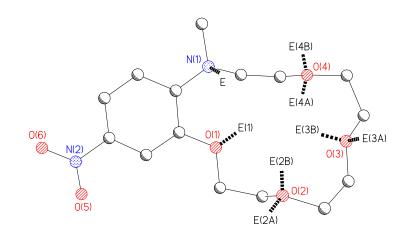
$$O_{2}N$$

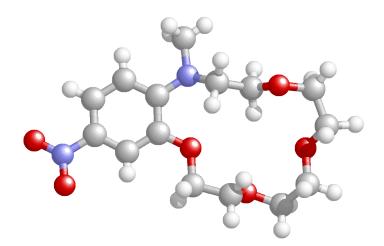
$$O_{3}N$$

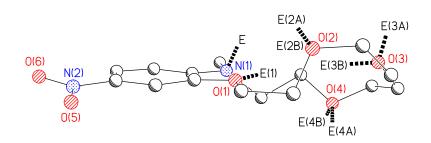
$$O_{4}N$$

$$O_{5}N$$

$$O_{7}N$$


$$O_{7}N$$


$$O_{8}N$$


$$O$$

РСА нитро-N-метилбензоаза-15-краун-5-эфира

$$O_2N$$
 O_2
 O_2
 O_3

Комплексообразование нитро-*N*-алкилбензоазакраун-эфиров

$$O_2N$$
 O_2N
 O_2N

M^{m+} - ион металла или (этил)аммония (m = 1, 2)

$$O_2N$$
 O_2N
 O_2N

 $K_{1.\,M^{m+}} @ K_{2.\,M^{m+}} >> K_{3.\,M^{m+}}$

Синтез нитропроизводных бензотиакраун-эфиров

$$O_2N$$
 $+$
 O_2N
 $+$

n = 0 - 3; M = Li, Na, K, Cs

Структура нитробензодитиакраун-эфиров

СИНТЕЗ КОМПЛЕКСОВ ПАЛЛАДИЯ(II) С ПРОИЗВОДНЫМИ БЕНЗОТИАКРАУН-ЭФИРОВ

48-68%

$$X = NO_2$$
, CHO; $n = 0 - 3$

$$O_{2}N$$

$$O_{2}N$$

$$O_{2}N$$

$$O_{2}N$$

$$O_{2}N$$

$$O_{2}N$$

$$O_{2}N$$

$$O_{3}$$

$$O_{2}N$$

$$O_{3}$$

$$O_{4}O$$

$$O_{5}$$

$$O_{5}$$

$$O_{5}$$

$$O_{5}$$

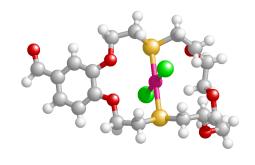
$$O_{6}O$$

$$O_{7}$$

$$O_{8}$$

$$O_$$

48%


76%

Пространственная структура комплексов Pd(II)

цис-комплексы

Инклюзивный транс-комплекс

Mendeleev Commun., **2009**, 19, 21; Inorg. Chem., **2011**, 50, 7500.

Синтез тиаазаподандов из нитробензотиакраун-эфиров

$$O_2N$$

$$MeNH_2$$

$$O_2N$$

$$0_2N$$

$$0_2N$$

$$0_2N$$

$$0_3N$$

$$X = S, Y = O, n = 0 - 3$$

 $X = O, Y = S, n = 1$

Циклизация тиаазаподандов

X = Y = S, O; n = 1, 2

Ступенчатая трансформация макроцикла бензокраун-эфиров

n = 0 - 3; Z = CHO, NO₂; X = Y = O, S; R = H, Alkyl

- * Азот в сопряжении с хромофором
- * Константы устойчивости высокие

$$z$$
 $+$
 $+$
 $+$
 x
 x
 x
 x
 x
 x
 x

Громов С. П. и др. *Усп. хим.* **2005**, *74*, 503 (обзор); Дмитриева С. Н., Громов С. П. и др. *Изв. АН. Сер. хим.* **2015**, 1726 (обзор).

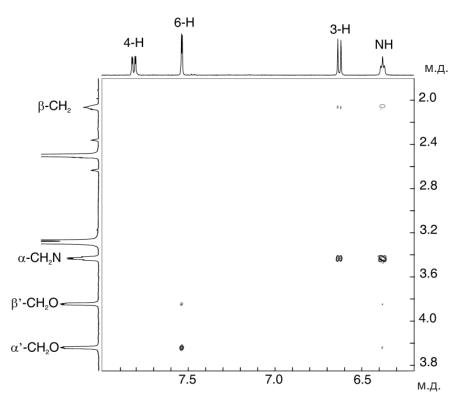
ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ БЕНЗОАЗАКРАУН-ЭФИРОВ

- Как селективные лиганды для катионов металлов
- § В ион-селективных красителях и флуороионофорах
- § В составе полимерных и ЛБ пленок
- § Для экстракции ионов металлов из воды
- § Для транспорта ионов через мембраны
- § В ион-селективных электродах

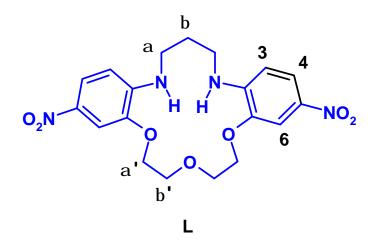
Основной подход к синтезу диазакраун-эфиров в литературе

$$\begin{pmatrix}
N & B \\
+ & \\
N & B
\end{pmatrix}$$

Трансформация макроцикла дибензокраун-эфиров


ОДНОСТАДИЙНАЯ ТРАНСФОРМАЦИЯ МАКРОЦИКЛА ДИБЕНЗОКРАУН-ЭФИРА В ДИБЕНЗОДИАЗАКРАУН-ЭФИРЫ

$$O_2N$$
 O_2N O_2N


Предполагаемый механизм трансформации

Структура и комплексообразование дибензодиазакраун-эфира

Фрагмент NOESY спектра диазакраун-эфира (L), DMSO- d_6 , 30 °C.

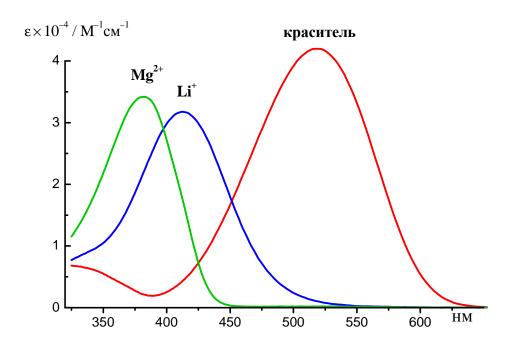
ЯМР H¹ титрование:

связывает F $^-$ [(Bu) $_4$ NF]: $\log K_{1(L):1(F)} = 2.8$, $\log K_{1(L):2(F)} = 2.1$ в MeCN- d_3 $\log K_{1(L):1(F)} = 2.3$, $\log K_{1(L):2(F)} = 1.9$ в DMSO- d_6

не связывает Na+, Ca²⁺, Ba²⁺.

Синтез *N*-метилазакраунсодержащих стириловых красителей

РСА азакраунсодержащих стириловых красителей


РСА комплексов азакраунсодержащих стириловых красителей

красителя с LiClO₄

Комплекс аза-18-краун-6-содержащего красителя с ${\bf Na}{\bf ClO_4}$

Спектры поглощения красителей и их комплексов

Спектры поглощения красителя и его комплексов с катионами металлов в MeCN

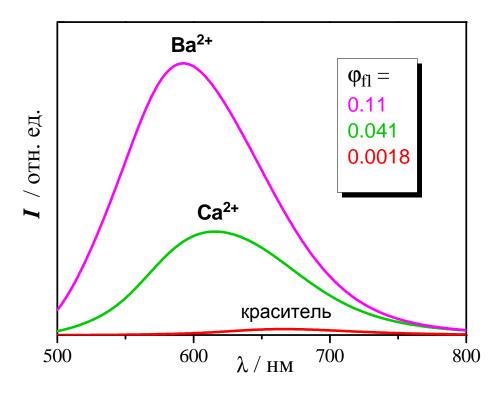
краситель

105 HM c Li⁺ ($\log K = 3.12$) 136 HM c Mg²⁺ ($\log K = 5.30$)

Константы устойчивости комплексов красителей с катионами металлов

Краситель	log <i>K</i>						
	Li+	Na ⁺	K+	Mg ²⁺	Ca ²⁺	Sr ²⁺	Ba ²⁺
S Me	3.12	2.72	-	5.30	5.24	4.71	4.24
S Me CIO.	2.30	3.53	3.78	< 2	7.19	8.03	7.60
Me CIO.	2.50	3.87	4.11	< 2	7.67	8.34	8.08
Me-N CIO ₄	2.53	3.96	4.24	< 2	7.86	8.54	8.21
Me_N_OOO	2.58	4.01	4.29	< 2	7.94	8.72	8.29
S. CIO.	1.80	3.03	-	2.68	5.17	4.94	4.81

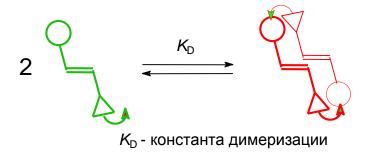
Спектрофотометрическое титрование в безводном МеСN



Флуоресценция красителей и их комплексов

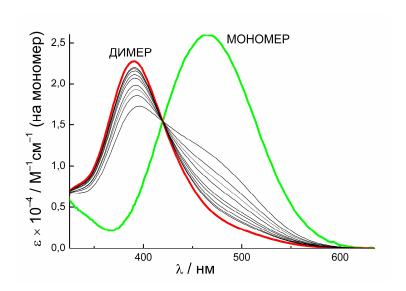
краситель

Разгорание флуоресценции красителя при комплексообразовании с Ba²⁺



Спектры флуоресценции в MeCN. Интегральные интенсивности прямо пропорциональны квантовым выходам флуоресценции.

Димеризация азакраунсодержащих стириловых красителей

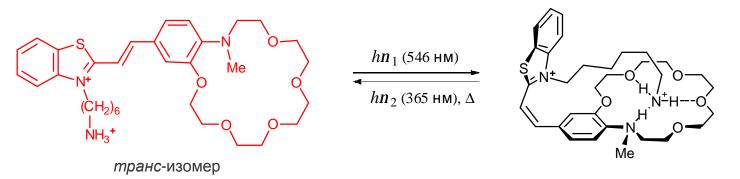

димерный комплекс "голова к хвосту"

- фрагмент азакраун-эфира

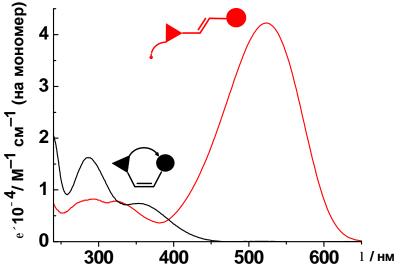
> - пиридиновый остаток

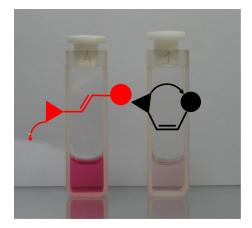
- (CH₂)₃NH₃+

краситель


Спектры поглощения красителя в смеси $MeCN/H_2O$ (47:3).

J. Org. Chem. 2014, 79, 11416;


J. Phys. Chem. 2015, 119, 13025.



Катион-«накрытый» комплекс азакраунсодержащего красителя

ВОЗМОЖНОСТИ ИСПОЛЬЗОВАНИЯ АЗАКРАУНСОДЕРЖАЩИХ СТИРИЛОВЫХ КРАСИТЕЛЕЙ

- § В качестве оптических молекулярных сенсоров для катионов металлов и аммония
- § В составе нанокомпозитных сенсорных материалов для количественного определения катионов металлов
- § В качестве супрамолекулярных фотопереключателей

Публикации:

Более 50 публикаций в научных журналах и патентов

Сотрудничество

- Институт общей и неорганической химии им. Н. С. Курнакова РАН
- Институт проблем химической физики РАН
- Московская академия тонкой химической технологии им. М. В.

Ломоносова

• Московская государственная академия ветеринарной медицины им.

К. И. Скрябина

- Институт органической химии им. Н. Д. Зелинского РАН
- Физико-химический институт им. А. В. Богатского НАН, Украина
- University of Durham, Great Britain

Исследования были выполнены при финансовой поддержке следующих фондов и организаций:

- Российский фонд фундаментальных исследований (1997-2016)
- Российская академия наук (2003-2015)
- Министерство образования и науки РФ (1999-2010)
- INTAS (2001)

Спасибо за внимание!

Зимняя конференция молодых ученых по органической химии WSOC - 2016

