

XX Mendeleev Congress on General and Applied Chemistry

Photoactive Supramolecular Systems Based on Unsaturated and Macrocyclic Compounds

Sergey P. Gromov A. I. Vedernikov, E. N. Ushakov, M. V. Alfimov

> http://suprachem.photonics.ru; http://www.photonics.ru

NANOTECHNOLOGY "BOTTOM-UP"

STRATEGIES OF CREATION OF NANOSIZED ARCHITECTURES

Organic synthesis Supramolecular Self-Assembly

SUPRAMOLECULAR DEVICES AND MACHINES

<u>Supramolecular devices</u> are structurally organized and functionally integrated chemical systems.

Systems that function as a result of mechanical motion of components relative to each other are called *supramolecular machines*.

J.-M. Lehn

They can be used:

"to design machines for energy and motion generation, conversion, and transmission at nanolevels, to devise a nanotool for the monitoring and diagnostics of nanoquantities of materials and substances.

Critical technologies of the RF

Means for control of supramolecular devices and machines

- § Photoswitching hn
- § Electrochemical switching e⁻
- **§** Chemical switching H⁺, Mⁿ⁺
- § Thermal switching D

PHOTOANTENNAS OF SUPRAMOLECULAR DEVICES AND MACHINES BASED ON UNSATURATED COMPOUNDS

Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1325 (review); Gromov S. P. *Rev. J. Chem.* **2011**, *1*, 1 (review); Ushakov E. N., Gromov S. P. *Russ. Chem. Rev.* **2015**, *84*, 787 (review).

PHOTOSWITCHABLE SUPRAMOLECULAR DEVICES BASED ON UNSATURATED AND CROWN COMPOUNDS

Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1325 (review); Ushakov E. N., Alfimov M. V., Gromov S. P. *Russ. Chem. Rev.* **2008**, *77*, 39 (review); Alfimov M. V., Fedorova O. A., Gromov S. P. *J. Photochem. Photobiol., A* **2003**, *158*, 183 (review).

Crown-containing unsaturated compounds

CBD

n = 1, 2

Gromov S. P., Alfimov M. V. *Russ. Chem. Bull.* **1997**, *46*, 611 (review); Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1299 (review).

Photocontrolled supramolecular machines based on unsaturated compounds, cyclodextrins and cucurbiturils

photocontrolled supramolecular machine

cyclodextrins

cucurbiturils

Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1325 (review); Gromov S. P. *Rev. J. Chem.* **2011**, *1*, 1 (review) Ushakov E. N., Gromov S. P. *Russ. Chem. Rev.* **2015**, *84*, 787 (review).

Self-assembly of photoswitchable supramolecular devices with participation of metal cations

Part I

Complex formation

 $\epsilon \cdot 10^{-4} / 1 \text{ mol}^{-1} \cdot \text{cm}^{-1}$

Dokl. Chem. **1990**, *314*, 279; Ushakov E. N., Alfimov M. V., Gromov S. P. *Macroheterocycles.* **2010**, *3*, 189 (review) *J. Org. Chem.* **2013**, *78*, 9834.

OMe

ОМе

Photoswitchable supramolecular devices

Dokl. Chem. **1991**, 317, 99; Chem. Phys. Lett. **1991**, 185, 455; J. Am. Chem. Soc. **1992**, 114, 6381; J. Am. Chem. Soc. **1999**, 121, 4992.

Photocycle of crown-containing styryl dyes

Gromov S. P. Russ. Chem. Bull. 2008, 57, 1325 (review).

Photoswitchable supramolecular devices

[2+2]- Photocycloaddition of CSD

C _L , /mol ⁻ l ⁻¹	5 [.] 10 ⁻⁶	2.4 [.] 10 ⁻⁵	4.5 [.] 10 ⁻⁵	2.1 [.] 10 ⁻⁴	2 [.] 10 ⁻³
F	0.0022	0.0043	0.0052	0.0051	0.0055

J. Am. Chem. Soc. **1992**, *114*, 6381; Изв. АН. Сер. хим. **1993**, *4*2, 1449; J. Chem. Soc., Perkin Trans. 2. **1999**, 601; J. Org. Chem. **2003**, 68, 6115.

Photoswitchable supramolecular device

Photoinduced recoordination reaction

J. Fluor. **1999**, *9*, 33; *Helv. Chim. Acta* **2002**, *85*, 60; Rusalov M. V., Gromov S. P. et al. *Russ. Chem. Rev.* **2010**, *79*, 1193 (review); *Photochem. Photobio. Sci.* **2011**, *10*, 15.

Self-assembly of photoswitchable supramolecular devices with participation of hydrogen bonds

Part II

Dimerization of CSD

RF patent 2278134 **2006**; *J. Org. Chem.* **2014**, 79, 11416; *J. Phys. Chem. A* **2015**, *119*, 13025; *New J. Chem.* **2016**, *40*, 7542.

in MeCN

X-ray structure determination of dimeric compex

syn-"head-to-tail" dimeric complex

Russ. Chem. Bull. **2009**, *58*, 1211; *J. Org. Chem.* **2014**, *79*, 11416.

[2+2]-Photocycloaddition of CSD

In MeCN, irradiation time, 4 h

PHOTOCHEMISTRY CENTER

RF patent 2278134 **2006**; Russ. Chem. Bull. **2009**, 58, 1211; J. Org. Chem. **2014**, 79, 11416; J. Phys. Chem. A **2015**, 119, 13025.

X-ray structure determination of cyclobutane

Supramolecular photoswitches based on ammonioalkyl derivatives of crown-ether styryl dyes

Found property provides grounds for believing that the crystals of these photoactive supramolecular systems could be used for data recording and storage.

J. Org. Chem. **2014**, 79, 11416; *J.* Phys. Chem. A **2015**, 119, 13025.

FORMATION OF PSEUDOSANDWICH COMPLEXES

Intramolecular [2+2]-photocycloaddition of bisCSD

(a) ¹H NMR spectrum of the cyclobutane protons and (b) its best fit to an AA'BB' spin system.

Mendeleev Commun. 2005, 15, 173.

Formation of bispseudosandwich complexes and [2+2]-Photocycloaddition

syn-isomer

Russ. Chem. Bull. **2009**, *58*, 108; *New. J. Chem.* **2011**, *35*, 724.

Self-assembly

of photocontrolled supramolecular machines

Part III

PHOTOCONTROLLED SUPRAMOLECULAR MACHINE

 $1 \cdot H_2 O @ HP - \beta - CD$ IgK = 1.9

1H⁺OH⁻@HP-β-CD

Discovery of the reversible photoinduced mechanical displacement of naphthylpyridine in the β -cyclodextrin cavity allowed us to develop a new type of photocontrolled molecular machines.

Russ. Chem. Bull. **2004**, 53, 2525; J. Photochem. Photobiol. **2011**, 217, 87; Russ. Chem. Bull. **2013**, 62, 2150.

X-ray structure determination of photocontrolled supramolecular machine

Russ. Chem. Bull. **2004**, 53, 2525; J. Photochem. Photobiol. **2011**, 217, 87; Russ. Chem. Bull. **2013**, 62, 2150.

PHOTOCONTROLLED SUPRAMOLECULAR MACHINES

SD	CB[8]				
R	lg <i>K</i> _{1:1}	lg <i>K</i> _{2:1}	lg K _{cyclo}		
Et	4.9	4.1	4.3		
$(CH_2)_3 NH_3^+$	5.0	4.4	4.8		
(CH ₂) ₃ SO ₃ ⁻	4.0	2.6	3.2		

Eur. J. Org. Chem. **2010**, 2587; *J. Phys. Chem. A.* **2011**, *115*, 4505; *J. Photochem. Photobiol. A.* **2013**, 253, 52; *Chem. Phys. Lett.* **2016**, *647*, 157.

cyclobutane@CB[8]

PHOTOCONTROLLED SUPRAMOLECULAR ASSEMBLER BASED ON CUCURBIT[8]URIL

Eur. J. Org. Chem., 2010, 2587.

PHOTOCONTROLLED SUPRAMOLECULAR ASSEMBLER BASED ON CUCURBIT[8]URIL

Eur. J. Org. Chem., **2010**, 2587; *J. Phys. Chem. A.*, **2011**, *115*, 4505; *J. Photochem. Photobiol. A*, **2013**, 253, 52; *High Energy Chem.*, **2014**, 48, 253.

X-ray structure determination of photocontrolled supramolecular assembler

Self-assembly to photoactive LB-monolayers and crystal engineering

Часть IV

MONOLAYERS OF IONSELECTIVE BUTADIENYL DYE

The dye monolayer upon photoactivation on the 1 mM solutions of $Hg(ClO_4)_2$

New. J. Chem. **2002**, *26*, 543; *Langmuir* **2006**, *22*, 1571.

CRYSTAL ENGINEERING

New. J. Chem. **2007**, *31*, 980; *CrystEngComm.* **2015**, *17*, 4584.

It is possible to implement all main types of photoprocesses:

- **§** Fluorescence, excimer formation
- § Photodissociation
- **§** Photoisomerization
- **§** Photocycloaddition
- § photoelectrocyclization
- **§** charge-transfer complex formation,
 - electron transfer
- **§** excitation transfer
- § TICT state

Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1325 (review); Ushakov E. N., Alfimov M. V., Gromov S. P. *Russ. Chem. Rev.* **2008**, *77*, 39 (review); Ushakov E. N., Gromov S. P. *Russ. Chem. Rev.* **2015**, *84*, 787 (review).

Molecular meccano

of photoactive supramolecular systems

Gromov S. P., Alexander Butlerov prize of RAS

Unique set of characteristics needed:

- **§** Accessibility through organic synthesis.
- § Tendency for spontaneous organization into various supramolecular architectures.
- § The ability to undergo different types of photochemical transformations depending on the structure.
- **§** The feature of high-efficiency molecular photoswitching.

Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1325 (review); Gromov S. P. *Rev. J. Chem.* **2011**, *1*, 1 (review).

Applied potential:

new strategy for the design of materials for nanophotonics

Demonstrated by an example of design:

- § Optical chemosensor materials
- § Data optical recording and storage systems
- § Supramolecular switches
- § Photoswitchable supramolecular devices
- § Photocontrolled supramolecular machines
- **§** Photochromic ionophores and photocontrolled membrane transport
- **§** Photoswitchable polymeric and LB films
- § Laser dyes

Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1325 (review); Ushakov E. N., Gromov S. P. et al. *Russ. Chem. Rev.* **2008**, *77*, 39 (review); Ushakov E. N., Gromov S. P. *Russ. Chem. Rev.* **2015**, *84*, 787 (review).

Publications :

More than 320 publications in scientific journals and patents

Collaboration

- Institute of Problems of Chemical Physics of RAS
- Kurnakov Institute of General and Inorganic Chemistry of RAS
- Lomonosov Moscow State University, Chemical Department
- Institute of Bioorganic Chemistry of RAS
- Lomonosov Moscow State Academy of Fine Chemical Technology
- Zelinsky Institute of Organic Chemistry of RAS
- University of Durham, Great Britain
- Max-Planck-Institut fur Biophysikalische Chemie, Germany
- am Engler-Bunte Institut der Universitat Karlsruhe, Germany
- University of Umea, Sweden
- Bogatsky Physicochemical Institute of NAS, Ukraine
- North Carolina State University, U.S.A.
- The Florida State University, U.S.A.
- Universita' Degli Studi Di Bologna, Italy

http://suprachem.photonics.ru

Acknowledgment

This work was supported by the following organizations:

- Russian Science Foundation (2014-2016)
- RFBR (1994-2016)
- Russian Academy of Sciences (2003-2016)
- The Ministry for Science and Technology of Russia (1999-2014)
- Moscow Government (2003-2005)
- INTAS (1993-2005)
- CRDF (1996-2004)
- DFG (1996-2004)
- ISF (1993-1994)

Thank You!

XX Mendeleev Congress on General and Applied Chemistry

http://suprachem.photonics.ru