

V Всероссийская конференция с международным участием по органической химии

Molecular meccano of photoactive supramolecular devices and machines based on unsaturated and macrocyclic compounds

Prof. Sergey P. Gromov

http://suprachem.photonics.ru http://www.chem.msu.ru/rus/lab/organic/supra-nano.html

NANOTECHNOLOGY "BOTTOM-UP"

STRATEGIES OF CREATION OF NANOSIZED ARCHITECTURES

HIERARCHY OF STRUCTURAL ORGANIZATION OF MATTER

TYPES OF INTERMOLECULAR BONDS

Coordination bonds

Ion-ion interactions

Ion-dipole interactions

Hydrogen bonds

Dipole-dipole interactions

Stacking interactions

Hydrophobic interactions

SUPRAMOLECULAR DEVICES AND MACHINES

<u>Supramolecular devices</u> are structurally organized and functionally integrated chemical systems.

Systems that function as a result of mechanical motion of components relative to each other are called *supramolecular machines*.

J.-M. Lehn

They can be used:

"to design machines for energy and motion generation, conversion, and transmission at nanolevels, to devise a nanotool for the monitoring and diagnostics of nanoquantities of materials and substances.

Critical technologies of the RF

Means for control of supramolecular devices and machines

- § Photoswitching *h*n
- **§** Electrochemical switching e⁻
- § Chemical switching H⁺, Mⁿ⁺
- § Thermal switching D

MOLECULAR MECCANO IN LIVING NATURE

Nucleic acids

chromosomes

MOLECULAR MECCANO

OF PHOTOACTIVE SUPRAMOLECULAR DEVICES AND MACHINES IN NANOTECHNOLOGY

photocontrolled molecular machine

PHOTOANTENNAS OF SUPRAMOLECULAR DEVICES AND MACHINES BASED ON UNSATURATED COMPOUNDS

Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1325 (review); Gromov S. P. *Rev. J. Chem.* **2011**, *1*, 1 (review); Ushakov E. N., Gromov S. P. *Russ. Chem. Rev.* **2015**, *84*, 787 (review).

PHOTOSWITCHABLE SUPRAMOLECULAR DEVICES BASED ON UNSATURATED AND CROWN COMPOUNDS

Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1325 (review); Ushakov E. N., Alfimov M. V., Gromov S. P. *Russ. Chem. Rev.* **2008**, *77*, 39 (review); Alfimov M. V., Fedorova O. A., Gromov S. P. *J. Photochem. Photobiol., A* **2003**, *158*, 183 (review).

Crown-containing unsaturated compounds

Gromov S. P., Alfimov M. V. *Russ. Chem. Bull.* **1997**, *46*, 611 (review); Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1299 (review).

Photocontrolled supramolecular machines based on unsaturated compounds, cucurbiturils and cyclodextrins

photocontrolled supramolecular machine

Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1325 (review); Gromov S. P. *Rev. J. Chem.* **2011**, *1*, 1 (review) Ushakov E. N., Gromov S. P. *Russ. Chem. Rev.* **2015**, *84*, 787 (review).

COMPONENT SIZES IN PHOTOACTIVE SUPRAMOLECULAR DEVICES AND MACHINES

Complex of butadienyl dye

Complex of styryl dye

 β -Cyclodextrin

Self-assembly of photoswitchable supramolecular devices with participation of metal cations

Part I

Complex formation

ε⁻10⁻⁴/1 mol⁻¹ · cm⁻¹

λ/ nm

Dokl. Chem. **1990**, *314*, 279; Ushakov E. N., Gromov S. P. et al. *Macroheterocycles.* **2010**, *3*, 189 (review) *J. Org. Chem.* **2013**, *78*, 9834.

Photoswitchable supramolecular devices

Chem. Phys. Lett. 1991, 185, 455; J. Am. Chem. Soc. 1992, 114, 6381; J. Am. Chem. Soc. 1999, 121, 4992.

Anion-"capped" complexes

Russ. Chem. Bull. **1998**, 47, 97; J. Chem. Soc., Perkin Trans. 2. **1999**, 601; J. Am. Chem. Soc. **1992**, 114, 6381; J. Am. Chem. Soc. **1999**, 121, 4992.

Formation of anion-"capped" complex

Russ. Chem. Bull. 1997, 46, 1143.

λ /nm

Photocycle of crown-containing styryl dyes

Gromov S. P. Russ. Chem. Bull. 2008, 57, 1325 (review).

Photoswitchable supramolecular devices

[2+2] Photocycloaddition of CSD

ε×10 ⁻⁴ /Imo	ol ⁻¹ cm ⁻¹			
2.0				
-	Λ			
1.5 -				
-		~		
1.0 -		\sim		
-				
0.5 -	\mathbf{V}	\		
-			\backslash	
200	250	300	350	400
200	200	000	000	λ / nm

C _L , /mol [·] l ⁻¹	5 [.] 10 ⁻⁶	2.4 [.] 10 ⁻⁵	4.5 [.] 10 ⁻⁵	2.1 [.] 10 ⁻⁴	2 [.] 10 ⁻³
F	0.0022	0.0043	0.0052	0.0051	0.0055

 $\rightarrow - O_{N^+}$

$$- -(CH_2)_n SO_3^-, n = 3,4$$

J. Am. Chem. Soc. **1992**, *114*, 6381; *Russ. Chem. Bull.* **1993**, *42*, 1385; *J. Chem. Soc., Perkin Trans. 2.* **1999**, 601; *J. Org. Chem.* **2003**, *68*, 6115.

Photocycle of crown-containing styryl dyes

[2+2]-Photocycloaddition of CSD

Russ. Chem. Bull. 1996, 45, 654.

[2+2] PHOTOCYCLOADDITION OF MULTIPHOTOCHROMIC CSD

Russ. Chem. Bull. 1998, 47, 97; J. Chem. Soc., Perkin Trans. 2. 1999, 601.

¹H NMR SPECTRA

Russ. Chem. Bull. **1995**, *44*, 2131; J. Org. Chem., **2003**, 68, 6115.

Bruker AMX-400, in CD_3CN

DIMERIC COMPLEXES

Photoswitchable supramolecular device

Photoinduced recoordination reaction

Russ. Chem. Bull. **1999**, *48*, 525; *J. Fluor.* **1999**, *9*, 33; Rusalov M. V., Gromov S. P. et al. *Russ. Chem. Rev.* **2010**, *79*, 1193 (review).

[2+2] PHOTOCYCLOADDITION OF CBD

Helv. Chim. Acta **2002**, 85, 60; Photochem. Photobio. Sci., **2011**, 10, 15.

Self-assembly of sandwich complexes

trans,trans-isomer

M²⁺ = Ba²⁺, Sr²⁺, Ca²⁺

Complex	log <i>K</i> 1	λ_{LM} , nm	λ_L - λ_{LM} , nm
L'Ba ²⁺	8.0	390	42
Monomer [·] Ba ²⁺	4.39	402	28

J. Chem. Soc., Perkin Trans. 2. **1999**, 1323; *J. Phys. Chem. A.* **1999**, 103, 11188; *RF patent* 2389745 **2010**.

X-ray structure determination of sandwich complex

Crystallography Reports 2003, 48, 613.

Intramolecular [2+2] photocycloaddition of bisCSD

J. Chem. Soc., Perkin Trans. 2. 1999, 1323.

[2+2]-Photocycloaddition of hetarylphenylethenes

Complex formation of bisCS

trans-L

New. J. Chem. 2011, 35, 724.

X-ray structure determination of double sandwich complex

New. J. Chem. 2011, 35, 724.

[2+2] Photocycloaddition of bisCS

New. J. Chem. 2011, 35, 724.

Self-assembly of photoswitchable supramolecular devices with participation of hydrogen bonds

Part II

Intramolecular complexation of *cis*-isomers

Mendeleev Commun. **2007**, 17, 264; J. Mol. Structure. **2009**, 935, 136.

Dimerization of CSD

in MeCN in

in MeOH

RF patent 2278134 **2006**; J. Org. Chem. **2014**, 79, 11416; J. Phys. Chem. A **2015**, 119, 13025.

DIMERIZATION

 $\log K_{\rm d}$

7.90

7.12

in CD₃CN

Russ. Chem. Bull. **2009**, 58, 1211; J. Org. Chem. **2014**, 79, 11416; J. Phys. Chem. A **2015**, 119, 13025.

X-ray structure determination of dimeric compex

syn-"head-to-tail" dimeric complex

Russ. Chem. Bull. **2009**, *58*, 1211; *J. Org. Chem.* **2014**, *79*, 11416.

[2+2] Photocycloaddition of CSD

In MeCN, irradiation time, 4 h

RF patent 2278134 **2006**; Russ. Chem. Bull. **2009**, 58, 1211; J. Org. Chem. **2014**, 79, 11416; J. Phys. Chem. A **2015**, 119, 13025.

X-ray structure determination of cyclobutane

syn-cyclobutane

Supramolecular photoswitches based on ammonioalkyl derivatives of crown-ether styryl dyes

Found property provides grounds for believing that the crystals of these photoactive supramolecular systems could be used for data recording and storage.

J. Org. Chem. **2014**, *79*, 11416; *J. Phys. Chem. A* **2015**, *119*, 13025.

Formation of pseudodimeric complexes

R, R' = H, OMe, SMe, NMe₂, NO₂, Cl n = 0, 1, 3log K = 3.1 - 3.7

Mendeleev Commun., **2007**, *17*, 29; Russ. Chem. Bull. **2009**, *58*, 1955; New. J. Chem. **2016**, *40*, 7542.

[2+2] cross-Photocycloaddition

one of the 38 possible isomers

syn-"head-to-tail"

rctt isomers

Mendeleev Commun., **2007**, *17*, 29; Russ. Chem. Bull. **2009**, 58, 1955; RF patent 2383571 **2010**; New. J. Chem. **2016**, *40*, 7542.

FORMATION OF PSEUDOSANDWICH COMPLEXES

Intramolecular [2+2] photocycloaddition of bisCSD

(a) ¹H NMR spectrum of the cyclobutane protons and (b) its best fit to an AA'BB' spin system.

Mendeleev Commun. 2005, 15, 173.

Formation of bispseudosandwich complexes and [2+2] Photocycloaddition

syn-isomer

Russ. Chem. Bull. **2009**, 58, 108; New. J. Chem. **2011**, 35, 724; J. Photochem. Photobiol. A. **2017**, 340, 80;

Formation of Charge Transfer Complex of bisCS

Org. Lett. **1999**, *1*, 1697 ; *New. J. Chem.* **2005**, *29*, 881; *J. Org. Chem.* **2011**, *76*, 6768; *Photochem. Photobiol. Sci.* **2017**, *16*, 1801.

Formation of Charge Transfer Complexes

J. Org. Chem. 2011, 76, 6768.

Self-assembly

of photocontrolled supramolecular machines

Part III

PSEUDOROTAXANE COMPLEXES OF CUCURBITURILS

Russian Nanotechnologies **2007**, 2, 56; J. Mol. Struct. **2011**, 989, 114; Chem. Phys. Lett. **2014**, 610-611, 91; J. Photochem. Photobio. A. **2018**, 353, 34.

PHOTOCONTROLLED SUPRAMOLECULAR MACHINE

 $1 \cdot H_2 O @ HP - \beta - CD$ $\log K = 1.9$

 $1H^+OH^-@HP-\beta-CD$

Discovery of the reversible photoinduced mechanical displacement of naphthylpyridine in the β-cyclodextrin cavity allowed us to develop a new type of photocontrolled molecular machines.

Russ. Chem. Bull. **2004**, 53, 2525; J. Photochem. Photobiol. A. **2011**, 217, 87; Russ. Chem. Bull. **2013**, 62, 2150.

X-ray structure determination of photocontrolled supramolecular machine

Russ. Chem. Bull. **2004**, 53, 2525; J. Photochem. Photobiol. A. **2011**, 217, 87; Russ. Chem. Bull. **2013**, 62, 2150.

PHOTOCONTROLLED SUPRAMOLECULAR MACHINE

SD

SD@CB[7]

SD@CB[7] *

Chem. Phys. Lett. 2016, 647, 157.

PHOTOCONTROLLED SUPRAMOLECULAR MACHINE

Pseudorotaxane complexes of cucurbiturils and unsaturated viologen analogues as the design of new-type photocontrolled supramolecular machines

X-ray structure determination of photocontrolled supramolecular machine

cis-V@CB[8]

New. J. Chem. 2006, 30, 458.

PHOTOCONTROLLED SUPRAMOLECULAR MACHINES

SD	CB[8]			
R	log <i>K</i> _{1:1}	log <i>K</i> _{2:1}	log K _{cyclo}	
Et	4.9	4.1	4.3	
$(CH_2)_3NH_3^+$	5.0	4.4	4.8	
$(CH_2)_3SO_3^{-1}$	4.0	2.6	3.2	

Eur. J. Org. Chem. **2010**, 2587; *J. Phys. Chem. A.* **2011**, *115*, 4505; *J. Photochem. Photobio. A.* **2013**, 253, 52; *Chem. Phys. Lett.* **2016**, *647*, 157.

cyclobutane@CB[8]

PHOTOCONTROLLED SUPRAMOLECULAR ASSEMBLER BASED ON CUCURBIT[8]URIL

Eur. J. Org. Chem., 2010, 2587.

PHOTOCONTROLLED SUPRAMOLECULAR ASSEMBLER BASED ON CUCURBIT[8]URIL

Eur. J. Org. Chem., **2010**, 2587; *J. Phys. Chem. A.*, **2011**, *115*, 4505; *High Energy Chem.*, **2014**, *48*, 253; *Chem. Phys. Lett.* **2017**, 673, 99.

X-ray structure determination of photocontrolled supramolecular assembler

It is possible to implement all main types of photoprocesses:

- **§** Fluorescence, excimer formation
- **§** Photodissociation
- **§** Photoisomerization
- **§** Photocycloaddition
- § photoelectrocyclization
- § charge-transfer complex formation, electron transfer
- **§** proton transfer
- **§** excitation transfer
- § TICT state

Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1325 (review); Ushakov E. N., Gromov S. P. et al. *Russ. Chem. Rev.* **2008**, *77*, 39 (review); Ushakov E. N., Gromov S. P. *Russ. Chem. Rev.* **2015**, *84*, 787 (review).

Molecular meccano

of photoactive supramolecular systems

Unique set of characteristics needed:

- **§** Accessibility through organic synthesis.
- § Tendency for spontaneous organization into various supramolecular architectures.
- § The ability to undergo different types of photochemical transformations depending on the structure.
- **§** The feature of high-efficiency molecular photoswitching.

Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1325 (review); Gromov S. P. *Rev. J. Chem.* **2011**, *1*, 1 (review).

Applied potential:

new strategy for the design of materials for nanophotonics

Demonstrated by an example of design:

- § Photoswitchable supramolecular devices
- § Photocontrolled supramolecular machines
- § Supramolecular photoswitches
- § Optical chemosensor materials
- § Data optical recording and storage systems
- **§** Photochromic ionophores and photocontrolled membrane transport
- **§** Photoswitchable polymeric and LB films
- § Laser dyes

Gromov S. P. *Russ. Chem. Bull.* **2008**, *57*, 1325 (review); Ushakov E. N., Gromov S. P. et al. *Russ. Chem. Rev.* **2008**, *77*, 39 (review); Ushakov E. N., Gromov S. P. *Russ. Chem. Rev.* **2015**, *84*, 787 (review).

Publications :

More than 320 publications in scientific journals and patents

Collaboration

- Institute of Problems of Chemical Physics of RAS
- Kurnakov Institute of General and Inorganic Chemistry of RAS
- Lomonosov Moscow State University, Chemical Department
- Institute of Bioorganic Chemistry of RAS
- Lomonosov Moscow State Academy of Fine Chemical Technology
- Zelinsky Institute of Organic Chemistry of RAS
- University of Durham, Great Britain
- Max-Planck-Institut fur Biophysikalische Chemie, Germany
- am Engler-Bunte Institut der Universitat Karlsruhe, Germany
- University of Umea, Sweden
- Bogatsky Physicochemical Institute of NAS, Ukraine
- North Carolina State University, U.S.A.
- The Florida State University, U.S.A.
- Universita' Degli Studi Di Bologna, Italy

Acknowledgment

This work was supported by the following organizations:

- Russian Science Foundation (2014 2018)
- RFBR (1994 2018)
- Russian Academy of Sciences (2003 2018)
- The Ministry for Science and Technology of Russia (1999 2014)
- Moscow Government (2003 2005)
- INTAS (1993 2005)
- CRDF (1996 2004)
- DFG (1996 2004)
- ISF (1993 1994)

Acknowledgment

Awards and Prizes:

State Prize of the Russian Federation (2018)

A. Butlerov prize of Russian Academy of Sciences (2006)

Scientific discovery of the USSR (1980)

http://suprachem.photonics.ru

Thank You

V Всероссийская конференция с международным участием по органической химии

http://suprachem.photonics.ru; http://www.chem.msu.ru/rus/lab/organic/supra-nano.html

