УДК 547.425.7г576

Синтез бензоазакраун-эфиров трансформацией макроцикла бензокраунэфиров и создание комплексообразователей на их основе*

С. Н. Дмитриева,^а А. И. Ведерников,^а Е. Н. Ушаков,^{а,б} Л. Г. Кузьмина,^в С. П. Громов^{а,г★}

^аЦентр фотохимии Российской академии наук, Российская Федерация, 119421 Москва, ул. Новаторов, 7А. Факс: (495) 936 1255. E-mail: spgromov@mail.ru ^бИнститут проблем химической физики Российской академии наук, Российская Федерация, 142432 Черноголовка Московской обл., просп. Акад. Семенова, 1. Факс: (496) 522 3507 ^вИнститут общей и неорганической химии им. Н. С. Курнакова Российской академии наук, Российская Федерация, 119991 Москва, Ленинский просп., 31. Факс: (495) 954 1279 ^гМосковский государственный университет им. М. В. Ломоносова, Химический факультет, Российская Федерация, 119991 Москва, Ленинские горы, 1

Обобщены результаты исследований, направленных на создание и развитие новой методологии синтеза функциональных производных бензоазакраун-эфиров путем ступенчатой трансформации макроцикла бензокраун-эфиров. Всестороннее изучение пространственной структуры и комплексообразующих свойств исходных бензокраун-эфиров, целевых бензоазакраун-эфиров и их ближайших структурных аналогов показало, что производные *N*-алкилбензоазакраун-эфиров проявляют намного более высокую способность связывать катионы металлов и аммония по сравнению с соответствующими *N*-фенилазакраун-эфирами. По комплексообразующим свойствам они сравнимы с бензокраун-эфирами, а в отдельных случаях превосходят их. Предложен новый подход к синтезу динитродибензодиазакраун-эфиров, основанный на одностадийной трансформации макроцикла *цис*-изомера динитродибензо-18-краун-6-эфира под действием алифатических диаминов. Описан синтез стириловых красителей, содержащих фрагмент *N*-метилбензоазакраун-эфира. Детальные исследования методами электронной спектроскопии, ЯМР и РСА выявили большой потенциал этих красителей как оптических молекулярных сенсоров для катионов щелочных и щелочноземельных металлов.

Ключевые слова: краун-соединения, бензокраун-эфиры, раскрытие цикла, поданды, замыкание цикла, бензоазакраун-эфиры, комплексообразователи, азакраунсодержащие красители.

Введение

Азакраун-соединения, которые содержат атом азота, сопряженный с хромофором, представляют значительный интерес для получения на их основе фотоактивных краун-соединений¹⁻⁶. В настоящее время наибольшее распространение для этих целей получили производные фенилазакраун-эфиров, которые, однако, имеют один существенный недостаток: их константы комплексообразования с ионами металлов невысоки (см., например, лит.^{7–16}). В этом отношении бензаннелированные производные азакраун-эфиров могут иметь значительные преимущества.

В литературе имеются лишь единичные примеры синтеза 1-аза-2,3-бензокраун-эфиров. Главным обра-

* По материалам V Международной конференции по физической химии краун-соединений, порфиринов и фталоцианинов (15—19 сентября 2014 г., Туапсе) и VII Международного симпозиума «Design and Synthesis of Supramolecular Architectures» (6—10 октября 2014 г., Казань).

зом они были получены конденсацией двух ациклических фрагментов (схема 1), при этом выходы редко превышали 10—20%.^{17—20} Встречаются также отдельные примеры получения функциональных производных бензоазакраун-эфиров ацилированием атома азо-

^{© 2015 «}Известия Академии наук. Серия химическая», Российская академия наук, Отделение химии и наук о материалах Российской академии наук, Институт органической химии им. Н. Д. Зелинского Российской академии наук

та в макроцикле и с помощью реакции электрофильного замещения в бензольном цикле (см. схему 1)^{18,20}. Методы синтеза бензоазакраун-эфиров циклизацией подходящего ациклического предшественника отсутствуют, поскольку такие исходные соединения практически недоступны. Для использования в синтезе фотоактивных соединений наибольший интерес вызывают формильные и нитропроизводные бензоазакраун-эфиров. Однако их синтез до сих пор не был описан.

Схема 1

1) Построение макроцикла из двух фрагментов

2) Синтез функциональных производных

Известно^{21–24}, что многие труднодоступные производные гетероциклов получаются из более доступных предшественников с использованием реакции трансформации цикла.

Эта идеология может быть распространена на азотсодержащие макрогетероциклические соединения. В этом случае обобщенная схема синтеза будет выглядеть следующим образом (схема 2). В качестве исходных соединений можно применять краун-эфиры, которые под действием N-нуклеофилов дадут азотсо-

держащие ациклические промежуточные соединения (азаподанды), которые могут быть использованы для циклизации в целевые азакраун-соединения. Применительно к бензоазакраун-эфирам эту схему можно реализовать, если в качестве исходных соединений взять производные бензокраун-эфиров, которые содержат акцепторные заместители, активирующие реакцию раскрытия макроцикла бензокраун-эфиров под действием аминов. Полученные азотсодержащие поданды после замены гидроксильной группы на более легко уходящие группы могут быть превращены в целевые бензоазакраун-эфиры.

Синтез формильных производных бензоазакраун-эфиров

На первом этапе исследований была поставлена задача разработки синтеза наиболее ценных для получения фотоактивных краун-соединений формильных производных бензоазакраун-эфиров. В качестве исходных соединений были взяты доступные формильные производные бензокраун-эфиров, содержащие атомы кислорода, серы и азота в макроцикле в различных комбинациях²⁵⁻³⁰. Реакция протекала под действием смеси алифатического амина и хлорида алкиламмония при нагревании (схема 3)³¹⁻³⁴. Азотсодержащие поданды были получены по этой реакции с выходами до 96%. По-видимому, реакция проходит через промежуточное образование иминиевой соли. Найдено, что на эффективность ее протекания влияет также темплатный эффект используемой соли алкиламмония.

Для успешной циклизации в азотсодержащих подандах необходимо было заменить гидроксильную группу на более легко уходящие атомы хлора и иода. Это было сделано с использованием хлористого тионила и пиридина на первой стадии и иодида натрия в ацетоне — на второй^{35–37}. Циклизацию полученных галогенпроизводных исследовали в отсутствие оснований и под действием слабого основания (схема 4)³⁷. Оказалось, что в отсутствие основания образуется почти исключительно *N*-деметилированное производное бензоазакраун-эфира, а под действием слабого основания — смесь азакраун-эфиров со значительным преобладанием *N*-метильного производного. Недостатком этих двух методов циклизации является длительность протекания реакции, которая даже за 150 ч не доходит до конца.

При использовании более сильного основания (гидрида натрия) нам удалось провести эту реакцию всего за полчаса (схема 5). При этом восстановления формильной группы в заметной степени не происходило, а выходы *N*-метильных производных бензоазакраун-эфиров были высокими^{38,39}.

Таким образом, полученные нами данные позволяют предположить, что реакция циклизации в зависимости от условий может протекать по двум механизмам^{37,39}. В отсутствие основания и под действием слабых оснований она, по-видимому, проходит через промежуточное образование макроциклического

X, Y = O, S, NMe; *n* = 0—3; R = Me, Et

Схема 4

n = 0—2; M = Li, Na, K, Rb, Cs

57-68%

катиона (путь *I*), который в результате элиминирования метильной группы или протона может превращаться в *N*-деметилированный бензоазакраун-эфир или *N*-метильное производное соответственно. Под действием сильного основания, по-видимому, образуется реакционноспособный ариламидный анион (путь *2*), который быстро и легко циклизуется в конечный продукт (схема 6).

Предложенный механизм реакции, включающий промежуточное образование макроциклического катиона, подтверждается протеканием реакции *N*-деметилирования, которая происходит при кипячении *N*-метильного производного с разбавленной уксусной кислотой³⁷. Продукт *N*-деметилирования образуется с выходом 35% (схема 7).

Мы осуществили также обратное превращение — метилирование по атому азота макроцикла бензоазакраун-эфира иодистым метилом под действием NaH (см. схему 7)³⁹. Реакция проходит быстро и с хорошим

Y = Cl, I; *n* = 0—2; В — основание

выходом, вероятно, через промежуточное образование реакционноспособного ариламидного аниона.

Строение и комплексообразование формильных производных бензоазакраун-эфиров

Полученные нами соединения были исследованы методами $\rm MMP^{37}$. В спектрах $\rm MMP^{1}H$ *N*-метильных производных бензоазакраун-эфиров сигнал от протона, находящегося в *орто*-положении к атому азота, значительно сдвинут в слабое поле по сравнению с соответствующим сигналом в спектрах их *N*-деметилированных производных (рис. 1). Это свидетельствует о том, что в молекулах *N*-метильных производных нарушено сопряжение донорного атома азота с бензольным циклом.

Кроме того, в спектрах NOESY *N*-метильных производных бензоазакраун-эфиров присутствует кросссигнал, отвечающий взаимодействию метильной группы с *орто*-протоном, что указывает на их пространственную близость (рис. 2). Кросс-сигнал, отвечающий взаимодействию *N*-метиленовой группы с *орто*-протоном, либо очень слабый, либо вообще отсутствует. Это свидетельствует о пирамидальности атома азота и, следовательно, о нарушении его сопряжения с бензольным циклом. Наоборот, в *N*-деметилированных производных бензоазакраун-эфиров *N*-метиленовая группа и атом водорода, находящийся в *орто*-положении к атому азота, пространственно сближены. В таком случае атом водорода, связанный с атомом азота, должен быть ориентирован внутрь макроцикла.

Эти наблюдения подтверждаются данными рентгеноструктурного анализа^{37,39,40} и результатами расчетов методом теории функционала плотности⁴¹. Было найдено, что *N*-метиленовая группа в *N*-метильном производном формилбензоаза-15-краун-5-эфира находится под углом ~40° по отношению к плоско-

Рис. 1. Фрагменты спектров ЯМР ¹Н *N*-деметилированного (*a*) и *N*-метилированного (*b*) формилбензоаза-15-краун-5-эфиров (CDCl₃); здесь и на рисунке 2 символами «#» и «*» обозначены сигналы хлороформа и бензола соответственно.

Рис. 2. Спектр NOESY формил-*N*-метилбензоаза-15-краун-5-эфира (CDCl₃).

сти бензольного кольца (рис. 3, a)^{37,39}, т.е. атом азота в значительной степени выведен из сопряжения с бензольным циклом. Следовательно, его неподеленная электронная пара (НЭП) может эффективно участвовать в образовании координационной связи с катионом металла. Более того, *N*-метилбензоазакраун-эфи-

Рис. 3. Молекулярная структура формил-*N*-метилбензоаза-15-краун-5-эфира (*a*) и ориентация НЭП гетероатомов макроцикла в нем (*b*) (НЭП обозначены буквенным символом Е с номером, соответствующим номеру гетероатома), а также молекулярные структуры формилбензоаза-18-краун-6-эфира (*c*) и формил-*N*-фенилаза-15-краун-5-эфира (*d*).

ры в значительной степени предорганизованы к образованию комплексов с катионами металлов и аммония, поскольку НЭП атома азота и большинства атомов кислорода направлены к центру макроцикла (рис. 3, b)³⁹.

В случае *N*-деметилированных производных было обнаружено, что атом водорода при атоме азота ориентирован строго внутрь макроцикла (рис. 3, c)^{37,39}. Можно предположить, что такое расположение атома водорода будет препятствовать комплексообразованию с катионами металлов.

Почти плоская геометрия N-сочленения в фенилазакраун-эфирах (рис. 3, *d*) предполагает высокую степень сопряжения НЭП атома азота с бензольным циклом, что вместе с более высокой гибкостью макроцикла делает эти соединения менее эффективными комплексообразователями по сравнению с *N*-метилбензоазакраун-эфирами³⁹.

Нами были получены и исследованы методом РСА комплексы формил-*N*-метилбензоазакраун-эфиров с перхлоратом бария³⁹. Катион бария находится над средней плоскостью макроцикла или погружен в его полость в случае 18-членного макроцикла с образованием координационных связей со всеми гетероатомами макроцикла, включая атом азота (рис. 4, *a* и *b*).

Мы провели количественную оценку способности формильных производных бензоазакраун-эфиров и ряда ближайших структурных аналогов (бензокраун-эфиров и фенилазакраун-эфиров) к образованию комплексов с перхлоратами металлов и аммония методом ЯМР ¹Н-титрования^{39,40}. Полученные данные свидетельствовали об образовании комплексов состава 1 L : 1 M^{m+}, а в случае катионов металлов с большим ионным радиусом также сэндвичевых комплексов состава 2 L : 1 M^{m+} по уравнениям

$$L + M^{m+} \stackrel{K_1}{\longrightarrow} (L \cdot M)^{m+},$$

Рис. 4. Молекулярная структура комплекса формил-N-метилбензоаза-18-краун-6-эфира с Ba(ClO₄)₂: фронтальная (*a*) и боковая (*b*) проекции.

Лиганд	$\lg K_1 (\lg K_2)$							
	Na ⁺	K ⁺	Ca ²⁺	Ba ²⁺	NH_4^+	EtNH ₃ ⁺		
	4.8	3.2 (1.9)	5.6	5.4 (5.1)	2.1	2.4		
	5.0	_	7.3	5.4	_	3.0		
	3.5	2.9 (2.5)	4.3	4.4 (4.2)	2.0	2.2		
	3.2	2.2	5.3	4.6 (2.5)	2.0	1.7		
	1.6	0.6	2.4	1.9	0.7	0.6		
	5.2	3.7	8.4	7.0	4.3	3.8		
	4.8	4.3	8.0	6.8	4.1	3.7		
	3.3	2.8	4.7	4.9	2.5	2.0		
	3.4	2.3	4.8	4.9	1.9	1.6		

Таблица 1. Константы устойчивости (К) комплексов краун-эфиров с перхлоратами металлов, аммония и этиламмония по данным ЯМР ¹Н-титрования в MeCN-d₃*

* Для определения высоких значений констант ($\lg K > 5$) использовали конкурентное ЯМР ¹Н-титрование.

где L — краун-эфир, M^{m+} — катион металла или аммония, K_1 и K_2 (л • моль⁻¹) — константы устойчивости

комплексов состава 1 L : 1 M^{m+} и 2 L : 1 M^{m+} соответственно.

Было показано, что *N*-метильные производные бензоазакраун-эфиров образуют значительно более устойчивые комплексы в сравнении с ближайшими структурными аналогами — фенилазакраун-эфирами. Более того, по комплексообразующим свойствам (табл. 1) они сопоставимы с полностью кислородными аналогами, а в отдельных случаях превосходят их.

Синтез нитропроизводных бензоазакраун-эфиров

На втором этапе наших исследований была поставлена задача разработать метод синтеза нитропроизводных бензоазакраун-эфиров. В качестве исходных соединений были взяты доступные нитропроизводные бензокраун-эфиров^{42,43}. Под действием спиртового раствора метиламина при нагревании происходила реакция раскрытия макроцикла с образованием соответствующих азотсодержащих подандов с выходами, близкими к количественным (схема 8)⁴⁴.

Оказалось, что эффективность протекания реакции раскрытия макроцикла под действием алифатических аминов зависит от длины углеводородного радикала, степени его разветвленности и природы заместителей в нем (схема 9)⁴⁵. Так, если в радикале первичного амина присутствует терминальная гидроксильная группа, то практически количественное образование азотсодержащего поданда наблюдается намного быстрее, чем в остальных случаях (за исключением MeNH₂). По-видимому, это связано с образованием внутримолекулярной водородной связи в про-

Схема 8

n = 0—2

Схема 9

R = Me, Et, Pr, Prⁱ, PhCH₂, PhCHMe, CH₂CH₂OH, CH₂CH₂CH₂OH; R´ = H R = Me, CH₂CH₂OH; R´ = Me n = 0-2; m = 2, 3

-02N

межуточном комплексе Мейзенгеймера, что существенно облегчает протекание реакции раскрытия макроцикла.

В полученных нитропроизводных азаподандов гидроксильная группа была заменена на более легко уходящие атомы хлора и иода способом, аналогичным синтезу формильных производных^{46,47}. Циклизация иодпроизводных азаподандов была осуществлена под действием гидрида натрия^{48,49}. Реакция протекала при нагревании за время от 0.5 до 2 ч, причем восстановления нитрогруппы в заметной степени не происходило. Целевые *N*-метилбензоазакраун-эфиры были синтезированы с выходами до 80% (схема 10).

Было найдено^{50,51}, что увеличение длины и объема заместителя при атоме азота иодсодержащих подандов приводит к уменьшению выхода бензоазакраун-эфиров и в целом к увеличению продолжительности реакции циклизации иодидов (схема 11). Так, максимальные выходы наблюдались в случае N-метильных производных, для N-этильных производных они были уже значительно ниже. Выходы для нитробензоазакраун-эфиров с заместителями Et, Pr и CH₂Ph различаются, но не существенно. В случае иодсодержащих подандов, имеющих при атоме азота наиболее объемистые изопропильный и α -фенилэтильный заместители, продукты циклизации не были обнаружены.

Поскольку реакция протекает за короткий промежуток времени (1—10 ч при нагревании), мы полагаем, что под действием сильного основания в резуль-

Схема 10

n = 0 (36%), 1 (80%), 2 (71%)

Схема 11

NaH

 $R = Et, Pr, PhCH_2;$ n = 1 (46-53%), 2 (34-40%) $R = Pr^i, PhMeCH; n = 1, 2 (0\%)$

тате отщепления протона от атома азота происходит промежуточное образование реакционноспособного ариламидного аниона, который легко вступает во внутримолекулярную реакцию циклизации (схема 12).

Проведена реакция *N*-деметилирования *N*-метильных производных нитробензоазакраун-эфиров под действием иодида аммония при нагревании (схема 13)⁵². Вероятно, реакция проходит через промежуточное образование макроциклического катиона. Получены бензоазакраун-эфиры с выходами до 100%.

Строение и комплексообразование нитропроизводных бензоазакраун-эфиров

Методом РСА исследовано строение нитропроизводного *N*-метилбензоаза-15-краун-5-эфира⁴⁹. Обнаружено, что присутствие нитрогруппы вместо формильной существенным образом не влияет на угол наклона *N*-метиленовой группы к плоскости бензольного кольца. В связи с этим из-за нарушения сопряжения атом азота остается доступным для комплексообразования с катионом металла, как и в формильных производных.

С помощью ЯМР¹Н-титрования определены константы устойчивости комплексов нитропроизводных краун-эфиров с катионами щелочных, щелочноземельных металлов и ионами аммония^{50,51}. *N*-Алкил-(нитробензо)азакраун-эфиры немного уступают формильным производным *N*-метилбензоазакраун-эфиров по способности связывать катионы металлов и аммония, что является следствием более высокой электроноакцепторности нитрогруппы по сравнению с формильной. Однако все основные закономерности, найденные ранее, полностью сохраняются.

Синтез, строение и комплексообразование нитропроизводных бензотиакраун-эфиров и бензотиаазакраун-эфиров

Для демонстрации общности подхода и с целью получения бензотиаазакраун-соединений мы разработали эффективные методы синтеза неописанных ранее нитробензотиакраун-эфиров, различающихся по размеру макроцикла и комбинации атомов О и S. Нитробензодитиакраун-эфиры получены путем конденсации бис(галогенэтокси)нитробензолов с терминальными алкандитиолами в присутствии карбонатов щелочных металлов с высокими выходами (схема 14)⁵³. Нами был предложен также новый метод синтеза нитробензотиа-15-краун-5-эфира из доступных нитропирокатехина и хлорэтоксиэтанола (см. схему 14).

Строение нитропроизводных бензодитиакраунэфиров установлено методом РСА. Показано^{53,54}, что атомы серы дитиакраун-эфирного фрагмента в монокристалле ориентированы неблагоприятно для координации иона металла. В растворе, однако, гибкий макрогетероциклический фрагмент способен к конформационной перестройке, обеспечивающей эффективное связывание, например, с солями Pd^{II}.^{55,56}

Так, нами была синтезирована серия неописанных ранее комплексов солей Pd^{II} с нитро- и формильными производными бензотиакраун-эфиров, которые имеют различный размер и дентатность лиганда, взаимодействием ацетонитрильного комплекса хлорида палладия или ацетата палладия со свободными лигандами (схема 15)^{57,58}.

Структуры комплексов бензотиакраун-эфиров были изучены методами ЯМР и РСА^{57,58}. Установлено, что факторами, определяющими геометрию комплексов бензотиакраун-эфиров, являются размер

Схема 12

Х HS С M₂CO₃ EtOH—H₂O O_2N O₂N HS 48-89% Cl OH ÓН O SOCl₂ NaOH + BuOH Рy O_2N O_2N OH QН HO 28% Ċ ĊΙ 0 Ο Na₂S O_2N O_2N С 64%

Схема 14

X = Cl, I; n = 0-3; M = Li, Na, K, Cs

полости и дентатность лиганда. Так, в случае 12-членных и 18-членных макроциклов образуются цис-комплексы (в отношении расположения атомов S в коор-

93%

динационной сфере металла) (рис. 5, а и b). В случае большего по размеру 21-членного макроцикла образуется инклюзивный комплекс Pd, имеющий mpanc-

X = NO₂, CHO; *n* = 0—3

Рис. 5. Молекулярные структуры комплексов $PdCl_2$ с формилбензодитиа-12-краун-4-эфиром (*a*), нитробензодитиа-18-краун-6-эфиром (*b*) и формилбензодитиа-21-краун-7-эфиром (*c*).

конфигурацию (рис. 5, *c*). Отметим, что случаи образования *транс*-комплексов, в которых Pd размещается в полости макроцикла, единичны.

Чтобы оценить широту применения новой методологии синтеза бензоазакраун-эфиров, полученные нитробензотиакраун-эфиры были введены в реакцию с этанольным раствором MeNH₂. Это привело к образованию тиаазаподандов с выходами до 95% (схема 16)⁵⁹.

Взаимодействием тиаазаподандов с SOCl₂ в присутствии пиридина были получены соответствующие хлорпроизводные (схема 17)⁶⁰. Однако попытки синтеза иодпроизводных, а также дальнейшей циклизации полученных хлорпроизводных под действием NaH в бензотиаазакраун-эфиры не увенчались успехом.

Синтез, строение и комплексообразование нитропроизводных дибензодиазакраун-эфиров

Разработанная нами методология синтеза бензоазакраун-эфиров была адаптирована к синтезу дибензодиазакраун-эфиров. Основным методом синтеза дибензодиазакраун-эфиров является реакция конден-

X = S, Y = O, *n* = 0-3; X = O, Y = S, *n* = 1

Схема 17

X, Y = S, O; *n* = 1, 2

сации двух ациклических фрагментов (схема 18), общие выходы редко превышают 10—20%.^{61,62} Примеры синтеза функциональных производных единичны.

Нами разработан новый подход к синтезу дибензодиазакраун-эфиров, основанный на одностадийной трансформации макроцикла дибензокраун-эфиров под действием диаминов. Наиболее удобным объектом для демонстрации этого подхода является *цис*- изомер динитродибензо-18-краун-6-эфира, для которого под действием диаминов можно ожидать образования динитродибензодиазакраун-эфиров (схема 19).

Первоначально мы изучили действие MeNH₂ и MeONa на динитродибензо-18-краун-6-эфиры, полученные нитрованием дибензо-18-краун-6-эфира, в виде трудноразделимой смеси двух изомеров. В обоих случаях в результате этих реакций были выделены по два поданда, соответствующие раскрытию *транс*и *цис*-изомеров динитродибензо-18-краун-6-эфира (схема 20)^{44,63}.

Под действием алифатических диаминов с различной длиной полиметиленовой цепочки *цис*-изомер динитродибензокраун-эфира при нагревании претерпевает трансформацию макроцикла в дибензодиазакраун-эфиры с выходами, достаточно высокими для соединений этого типа (схема 21)^{64,63}.

n = 0 (18%), 1 (31%), 2 (19%)

n = 0—2

Мы предполагаем, что реакция трансформации цикла протекает в две стадии. На первой из них, повидимому, имеет место атака атома азота алкандиамина по атому углерода бензольного цикла, находящемуся в *пара*-положении по отношению к нитрогруппе, в результате которой происходит раскрытие макрогетероцикла с образованием поданда, а второй стадией является внутримолекулярное нуклеофильное замещение алкоксигруппы. В результате образу-

i. 2 MeNH₂ или 2 MeONa.

n = 0—2

ется целевой продукт — динитродибензодиазакраунэфир — и выделяется диэтиленгликоль (схема 22).

Структура и комплексообразование дибензодиазакраун-эфира (n = 1) были изучены методами спектроскопии ЯМР⁶³. Анализ спектра NOESY дибензодиазакраун-эфира с n = 1 (рис. 6) указывает на то, что протоны при атомах азота направлены внутрь макрогетероцикла. Это должно препятствовать комплексообразованию с катионами металлов.

Методом ЯМР ¹Н-титрования было установлено, что этот дибензодиазакраун-эфир действительно не образует комплексов с ионами щелочных и щелочноземельных металлов, но способен связывать фторидионы ($\lg K_{1L:1F} = 2.8$, $\lg K_{1L:2F} = 2.1$ в MeCN-d₃), повидимому, за счет образования водородных связей с NH-фрагментами макроцикла. Этот факт позволяет рассматривать дибензодиазакраун-эфиры такого типа как перспективные комплексообразователи для анионов фтора.

Схема 23

n = 0, 1; X = I, ClO₄; Y = CH=CH, S. *i*. Пиперидин или пирролидин, EtOH. *ii*. Py, EtOH.

Синтез, строение и комплексообразование *N*-метилазакраунсодержащих стириловых красителей

Следующим этапом наших исследований стала разработка синтеза хромо- и флуороионофоров на основе бензоазакраун-эфиров. Нами были синтезированы новые стириловые красители, содержащие фрагмент *N*-метилбензоазакраун-эфира^{65,66}. Красители получены конденсацией формильных производных бензоазакраун-эфиров с четвертичными солями гетероциклических оснований (схема 23).

Структуры нескольких полученных красителей установлены методом РСА. Хромофорные фрагменты красителей имеют практически плоское строение, что свидетельствует о высокой степени сопряжения в них. Макроциклы красителей в значительной мере предорганизованы для образования комплексов включения с катионами металлов, поскольку НЭП атома N и большинства атомов О направлены в сторону центра полости макроцикла⁶⁶.

Нами были получены и исследованы методом РСА комплексы красителей с перхлоратами щелочных и щелочноземельных металлов⁶⁶. Найдено, что пространственное строение макроциклов красителей при образовании комплексов в основном остается таким же, что указывает на их высокую степень предорганизации к комплексообразованию (рис. 7, *a* и *b*).

Показано, что комплексообразование с катионами щелочных или щелочноземельных металлов вызывает значительные гипсохромные сдвиги в спектрах поглощения красителей, поэтому эти соединения можно использовать в качестве колориметрических молекулярных сенсоров⁶⁶. По величинам ионохромного эффекта *N*-метилазакраунсодержащие красители превосходят ранее известные родственные стириловые красители на основе фенилазакраун-эфиров и другие донорно-акцепторные хромоионофоры. Так, краситель ряда бензотиазола (n = 0) демонстрирует рекордную для иона Li⁺ величину ионохромного эф-фекта — 105 нм (рис. 8).

Комплексы красителей, обладающих 18-членным макроциклом, с небольшим по размеру ионом Li⁺ характеризуются двухполосными спектрами поглощения в MeCN. Этот факт предполагает, что комплексы существуют в двух конформациях — A и B (схема 24). Конформеры B, в которых отсутствует координационная связь N...Li⁺, ответственны за длинноволновые полосы в спектрах поглощения.

Рис. 8. Спектры поглощения *N*-метилаза-15-краун-5-содержащего стирилового красителя ряда 2-бензотиазола (*I*) и его комплексов с катионами $\text{Li}^+(2)$ и $\text{Mg}^{2+}(3)$ в MeCN.

Рис. 7. Молекулярные структуры комплексов *N*-метилаза-15-краун-5-содержащего стирилового красителя ряда 2-бензотиазола с LiClO₄ (a) и *N*-метилаза-18-краун-6-содержащего стирилового красителя ряда 2-хинолина с NaClO₄ (b).

Нами были измерены константы устойчивости комплексов *N*-метилазакраунсодержащих красителей с ионами металлов и аммония в MeCN⁶⁶. Найдено, что эти соединения обладают значительно более высокой способностью к комплексообразованию по сравнению с аналогами на основе фенилазакраунэфиров. Кроме того, они характеризуются более высокой ионной селективностью, например, константы устойчивости комплексов красителей (n = 1) с Mg²⁺ и Ca²⁺ различаются более чем на 5 порядков (табл. 2).

Комплексообразование с катионами металлов вызывает также сильное разгорание флуоресценции красителей, т.е. красители действуют как включающиеся флуоресцентные сенсоры. Так, для комплекса красителя пиридинового ряда (n = 1) с Ba²⁺ коэффициент разгорания флуоресценции достигает 61 (рис. 9).

Установлено, что азакраунсодержащие стириловые красители, имеющие короткий аммониоалкиль-

Таблица 2. Константы устойчивости (*K*) комплексов некоторых красителей с катионами металлов по данным спектрофотометрического титрования в MeCN

Краситель				lg <i>K</i>			
	Li ⁺	Na ⁺	K^+	Mg^{2+}	Ca ²⁺	Sr ²⁺	Ba ²⁺
$ \begin{array}{c} $	3.12	2.72	_	5.30	5.24	4.71	4.24
$ \begin{array}{c c} & & & & & \\ & & & & \\ & & & & \\ & & & &$	2.30	3.53	3.78	<2	7.19	8.03	7.60
$ \begin{array}{c} $	2.50	3.87	4.11	<2	7.67	8.34	8.08
$Me - N \rightarrow O O O O O O O O O O O O O O O O O O$	2.53	3.96	4.24	<2	7.86	8.54	8.21
$Me - N \rightarrow CIO_4^- O O O \rightarrow O O O O O O O O O O O O O O O $	2.58	4.01	4.29	<2	7.94	8.72	8.29
$ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	1.80	3.03	_	2.68	5.17	4.94	4.81

Рис. 9. Спектры флуоресценции *N*-метилаза-18-краун-6содержащего стирилового красителя ряда 4-пиридина (*I*) и его комплексов с катионами Ca²⁺ (*2*) и Ba²⁺ (*3*) в MeCN. Интегральные интенсивности в шкале энергии прямо пропорциональны квантовым выходам флуоресценции: $\varphi_f =$ = 0.0018 (*I*), 0.041 (*2*) и 0.11 (*3*).

ный заместитель у атома азота гетероциклического остатка, в растворе образуют димерные комплексы в результате спонтанной самосборки с участием водородных связей (схема 25). При этом наблюдается гипсохромный сдвиг длинноволновой полосы в спектре поглощения красителя (до 74 нм)^{67,68}.

Схема 25

– аммониоалкильный заместитель;

🔿 — бензоазакраун-эфирный фрагмент

Структура димерного комплекса *N*-метилаза-18краун-6-содержащего стирилового красителя в кристалле установлена методом РСА (рис. 10).

Введение длинного *N*-аммониоалкильного заместителя в гетероциклический остаток азакраунсодержащего стирилового красителя дало возможность получить путем фотооблучения в растворе катион-«накрытый» комплекс, в котором аммонийная группа координирована с азакраун-эфирным фрагментом посредством водородных связей (схема 26)⁶⁹. Внутримолекулярное комплексообразование ответственно за аномально сильный гипсохромный эффект, наблюдаемый при *транс—цис*-фотоизомеризации красителя (длинноволновый пик в спектре поглощения катион-«накрытой» *цис*-формы сдвинут гипсохромно на 170 нм относительно максимума в спектре исходной *транс*-формы).

Заключение

Таким образом, в результате проведенных нами исследований была разработана новая методология синтеза бензоазакраун-эфиров, основанная на ступенчатой трансформации доступных бензокраунэфиров (схема 27). Полученные *N*-алкильные производные бензоазакраун-эфиров не только имеют атом азота, напрямую соединенный с бензольным циклом, но и проявляют намного более высокую способность связывать катионы металлов по сравнению с фенилазакраун-эфирами. По комплексообразующим свойствам они близки к соответствующим бензокраунэфирам, а в отдельных случаях превосходят их.

Рис. 10. Молекулярная структура димерного комплекса *N*-метилаза-18-краун-6-содержащего стирилового красителя ряда пиридина.

n = 0-3; Z = CHO, NO₂; X, Y = O, S; R = H, Alk

Схема 28

 O_2N

n = 0 - 2

Предложен новый подход к синтезу динитродибензодиазакраун-эфиров, основанный на одностадийной трансформации макроцикла *цис*-изомера динитродибензо-18-краун-6-эфира под действием алифатических диаминов (схема 28).

Формильные и нитропроизводные бензоазакраунэфиров представляют в синтетическом плане наибольший интерес. Применяя известные методы, из этих производных можно получить многочисленное семейство соединений, содержащих фрагменты бензоазакраун-эфиров, которые могут быть использованы в качестве селективных лигандов для катионов металлов, для экстракции ионов металлов из воды, для транспорта ионов через мембраны, в ионселективных электродах, в качестве ионселективных красителей и флуороионофоров, а также в составе полимерных пленок и пленок Ленгмюра—Блоджетт.

Так, на основе формильных производных бензоазакраун-эфиров нами были синтезированы азакраунсодержащие стириловые красители, которые могут найти применение в качестве оптических молекулярных сенсоров на катионы металлов и аммония^{65,66}, в том числе в составе композитных сенсорных материалов для количественного определения катионов металлов^{70,71}. Следует отметить также потенциальную возможность использования этих красителей в качестве супрамолекулярных фотопереключателей⁶⁹.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований, Российской академии наук, Министерства образования и науки Российской Федерации и ИНТАС (INTAS).

Список литературы

1. H.-G. Löhr, F. Vögtle, Acc. Chem. Res., 1985, 18, 65.

- A. P. de Silva, H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy, J. T. Rademacher, T. E. Rice, *Chem. Rev.*, 1997, 97, 1515.
- 3. B. Valeur, I. Leray, Coord. Chem. Rev., 2000, 205, 3.
- 4. Е. Н. Ушаков, М. В. Алфимов, С. П. Громов, *Успехи химии*, 2008, **77**, 39 [Е. N. Ushakov, M. V. Alfimov, S. P. Gromov, *Russ. Chem. Rev.*, 2008, **77**, 39].
- 5. С. П. Громов, Изв. АН. Сер. хим., 2008, 1299 [S. P. Gromov, Russ. Chem. Bull. (Int. Ed.), 2008, 57, 1325].
- 6. А. В. Цуканов, А. Д. Дубоносов, В. А. Брень, В. И. Минкин, *Химия гетероцикл. соединений*, 2008, 1123 [А. V. Tsukanov, A. D. Dubonosov, V. A. Bren, V. I. Minkin, *Chem. Heterocycl. Compd. (Engl. Transl.)*, 2008, **44**, 899].
- 7. R. M. Izatt, K. Pawlak, J. S. Bradshaw, R. L. Bruening, *Chem. Rev.*, 1991, 91, 1721.
- K. Rurack, U. Resch-Genger, Chem. Soc. Rev., 2002, 31, 116.
- S. Fery-Forgues, F. Al-Ali, J. Photochem. Photobiol. C, 2004, 5, 139.
- С. П. Громов, О. А. Федорова, М. В. Алфимов, С. И. Дружинин, М. В. Русалов, Б. М. Ужинов, Изв. АН. Сер. хим., 1995, 2003 [S. P. Gromov, O. A. Fedorova, M. V. Alfimov, S. I. Druzhinin, M. V. Rusalov, B. M. Uzhinov, Russ. Chem. Bull. (Engl. Transl.), 1995, 44, 1922].
- S. I. Druzhinin, M. V. Rusalov, B. M. Uzhinov, M. V. Alfimov, S. P. Gromov, O. A. Fedorova, *Proc. Indian Acad. Sci. (Chem. Sci.)*, 1995, **107**, 721.
- Е. Н. Ушаков, С. П. Громов, О. А. Федорова, М. В. Алфимов, Изв. АН. Сер. хим., 1997, 484 [Е. N. Ushakov, S. P. Gromov, O. A. Fedorova, M. V. Alfimov, Russ. Chem. Bull. (Engl. Transl.), 1997, 46, 463].
- С. П. Громов, Е. Н. Ушаков, О. А. Федорова, В. А. Солдатенкова, М. В. Алфимов, *Изв. АН. Сер. хим.*, 1997, 1192
 [S. P. Gromov, E. N. Ushakov, O. A. Fedorova, V. A. Soldatenkova, M. V. Alfimov, *Russ. Chem. Bull. (Engl. Transl.)*, 1997, **46**, 1143].
- 14. С. П. Громов, С. А. Сергеев, С. И. Дружинин, М. В. Русалов, Б. М. Ужинов, Л. Г. Кузьмина, А. В. Чураков, Дж. А. К. Ховард, М. В. Алфимов, *Изв. АН. Сер. хим.*, 1999, 530 [S. P. Gromov, S. A. Sergeev, S. I. Druzhinin, M. V. Rusalov, B. M. Uzhinov, L. G. Kuz´mina, A. V.

Churakov, J. A. K. Howard, M. V. Alfimov, *Russ. Chem. Bull. (Engl. Transl.)*, 1999, **48**, 525].

- S. I. Druzhinin, M. V. Rusalov, B. M. Uzhinov, S. P. Gromov, S. A. Sergeev, M. V. Alfimov, *J. Fluor.*, 1999, 9, 33.
- 16. М. В. Русалов, Б. М. Ужинов, М. В. Алфимов, С. П. Громов, *Успехи химии*, 2010, 1193 [М. V. Rusalov, В. М. Uzhinov, M. V. Alfimov, S. P. Gromov, *Russ. Chem. Rev.*, 2010, **79**, 1099].
- 17. J. C. Lockhart, A. C. Robson, M. E. Thompson, S. D. Furtado, C. K. Kaura, A. R. Allan, J. Chem. Soc., Perkin Trans. 1, 1973, 577.
- C. J. Pedersen, M. H. Bromels, USA Pat. 3847949; Chem. Abstrs, 1975, 82, 73049.
- 19. S. A. G. Hogberg, D. J. Cram, J. Org. Chem., 1975, 40, 151.
- 20. J. C. Lockhart, M. E. Thompson, *J. Chem. Soc., Perkin Trans. 1*, 1977, 202.
- 21. H. C. van der Plas, *Ring Transformations of Heterocycles*, Academic Press, London–New York, 1973, **1**, 484; **2**, 352.
- 22. S. P. Gromov, Heterocycles, 2000, 53, 1607.
- 23. R. S. Sagitullin, S. P. Gromov, A. N. Kost, *Tetrahedron*, 1978, **34**, 2213.
- 24. A. N. Kost, R. S. Sagitullin, S. P. Gromov, *Heterocycles*, 1977, 7, 997.
- С. П. Громов, О. А. Федорова, А. И. Ведерников, В. В. Самошин, М. В. Алфимов, *Изв. АН. Сер. хим.*, 1993, 996
 [S. P. Gromov, O. A. Fedorova, A. I. Vedernikov, V. V. Samoshin, M. V. Alfimov, *Russ. Chem. Bull. (Engl. Transl.)*, 1993, **42**, 960].
- С. П. Громов, О. А. Федорова, А. И. Ведерников, В. В. Самошин, Н. С. Зефиров, М. В. Алфимов, *Изв. АН. Сер. хим.*, 1995, 121 [S. P. Gromov, O. A. Fedorova, A. I. Vedernikov, V. V. Samoshin, N. S. Zefirov, M. V. Alfimov, *Russ. Chem. Bull. (Engl. Transl.)*, 1995, **44**, 116].
- 27. M. V. Alfimov, Yu. V. Fedorov, O. A. Fedorova, S. P. Gromov, R. E. Hester, I. K. Lednev, J. N. Moore, V. P. Oleshko, A. I. Vedernikov, *J. Chem. Soc., Perkin Trans.* 2, 1996, 1441.
- О. А. Федорова, А. И. Ведерников, О. В. Ешеулова, П. В. Цапенко, Ю. В. Першина, С. П. Громов, Изв. АН. Сер. хим., 2000, 1881 [О. А. Fedorova, А. I. Vedernikov, О. V. Yescheulova, P. V. Tsapenko, Yu. V. Pershina, S. P. Gromov, Russ. Chem. Bull. (Int. Ed.), 2000, 49, 1853].
- O. A. Fedorova, A. I. Vedernikov, O. V. Yescheulova, Yu. V. Pershina, P. V. Tsapenko, S. P. Gromov, *Synth. Commun.*, 2002, **32**, 1909.
- О. А. Федорова, А. И. Ведерников, И. Е. Баронова, О. В. Ещеулова, Е. А. Федорчук, К. Глое, С. П. Громов, Изв. АН. Сер. хим., 2004, 381 [О. А. Fedorova, А. I. Vedernikov, I. E. Baronova, O. V. Yescheulova, E. A. Fedorchuk, K. Gloe, S. P. Gromov, Russ. Chem. Bull. (Int. Ed.), 2004, 53, 396].
- 31. С. П. Громов, А. И. Ведерников, О. А. Федорова, Изв. АН. Сер. хим., 1995, 950 [S. P. Gromov, A. I. Vedernikov, O. A. Fedorova, Russ. Chem. Bull. (Engl. Transl.), 1995, 44, 923].
- 32. С. П. Громов, А. И. Ведерников, О. А. Федорова, Изв. АН. Сер. хим., 1996, 687 [S. P. Gromov, A. I. Vedernikov, O. A. Fedorova, Russ. Chem. Bull. (Engl. Transl.), 1996, 45, 648].
- 33. S. N. Dmitrieva, M. V. Churakova, A. I. Vedernikov, S. P. Gromov, *Arkivoc*, 2004, **11**, 36.
- 34. С. Н. Дмитриева, М. В. Чуракова, С. П. Громов, *Журн. орган. химии*, 2005, **41**, 468 [S. N. Dmitrieva, M. V. Churakova, S. P. Gromov, *Russ. J. Org. Chem. (Engl. Transl.)*, 2005, **41**, 461].

- 35. С. П. Громов, А. И. Ведерников, С. Н. Дмитриева, Изв. АН. Сер. хим., 1999, 1204 [S. P. Gromov, A. I. Vedernikov, S. N. Dmitrieva, Russ. Chem. Bull. (Engl. Transl.), 1999, 48, 1190].
- 36. С. П. Громов, А. И. Ведерников, С. Н. Дмитриева, Пат. РФ 2161153; Бюл. изобрет., 2000, 36.
- 37. S. P. Gromov, S. N. Dmitrieva, A. I. Vedernikov, L. G. Kuz'mina, A. V. Churakov, Yu. A. Strelenko, J. A. K. Howard, *Eur. J. Org. Chem.*, 2003, 3189.
- 38. С. Н. Дмитриева, О. В. Тихонова, С. П. Громов, *Журн. орган. химии*, 2005, **41**, 1415 [S. N. Dmitrieva, O. V. Tikhonova, S. P. Gromov, *Russ. J. Org. Chem. (Engl. Transl.)*, 2005, **41**, 1387].
- 39. S. P. Gromov, S. N. Dmitrieva, A. I. Vedernikov, N. A. Kurchavov, L. G. Kuz'mina, Y. A. Strelenko, M. V. Alfimov, J. A. K. Howard, J. Phys. Org. Chem., 2009, 22, 823.
- А. И. Ведерников, С. Н. Дмитриева, Л. Г. Кузьмина, Н. А. Курчавов, Ю. А. Стреленко, Дж. А. К. Ховард, С. П. Громов, *Изв. АН. Сер. хим.*, 2009, 954 [А. І. Vedernikov, S. N. Dmitrieva, L. G. Kuz´mina, N. A. Kurchavov, Yu. A. Strelenko, J. A. K. Howard, S. P. Gromov, *Russ. Chem. Bull. (Int. Ed.)*, 2009, **58**, 978].
- В. Г. Авакян, С. П. Громов, А. И. Ведерников, С. Н. Дмитриева, М. В. Алфимов, *Изв. АН. Сер. хим.*, 2004, 25 [V. G. Avakyan, S. P. Gromov, A. I. Vedernikov, S. N. Dmitrieva, M. V. Alfimov, *Russ. Chem. Bull. (Int. Ed.)*, 2004, 53, 24].
- 42. G. E. Pacey, Y. P. Wu, B. P. Bubnis, Synth. Commun., 1981, 11, 323.
- 43. R. Ungaro, B. El Haj, J. Smid, J. Am. Chem. Soc., 1976, 98, 5198.
- 44. С. П. Громов, С. Н. Дмитриева, В. Е. Красновский, Изв. AH. Cep. хим., 1997, 540 [S. P. Gromov, S. N. Dmitrieva, V. E. Krasnovsky, Russ. Chem. Bull. (Engl. Transl.), 1997, 46, 519].
- 45. С. П. Громов, С. Н. Дмитриева, Изв. АН. Сер. хим., 1999, 542 [S. P. Gromov, S. N. Dmitrieva, Russ. Chem. Bull. (Engl. Transl.), 1999, 48, 537].
- 46. С. П. Громов, С. Н. Дмитриева, М. В. Чуракова, А. Ю. Турчанов, Изв. АН. Сер. хим., 2002, 1232 [S. P. Gromov, S. N. Dmitrieva, M. V. Churakova, A. Yu. Turchanov, Russ. Chem. Bull. (Int. Ed.), 2002, 51, 1335].
- 47. С. П. Громов, С. Н. Дмитриева, М. В. Чуракова, Пат. РФ 2215738; Бюл. изобрет., 2003, 31.
- S. P. Gromov, S. N. Dmitrieva, M. V. Churakova, *Synthesis*, 2003, 593.
- С. П. Громов, С. Н. Дмитриева, М. В. Чуракова, А. И. Ведерников, Н. А. Курчавов, Л. Г. Кузьмина, Н. А. Катаева, Дж. А. К. Ховард, *Журн. орган. химии*, 2004, 1247 [S. P. Gromov, S. N. Dmitrieva, M. V. Churakova, A. I. Vedernikov, N. A. Kurchavov, L. G. Kuz'mina, N. A. Kataeva, J. A. K. Howard, *Russ. J. Org. Chem. (Engl. Transl.)*, 2004, **40**, 1200].
- 50. С. Н. Дмитриева, М. В. Чуракова, Н. А. Курчавов, А. И. Ведерников, Л. Г. Кузьмина, А. Я. Фрейдзон, А. А. Багатурьянц, Ю. А. Стреленко, Дж. А. К. Ховард, С. П. Громов, Изв. АН. Сер. хим., 2010, 1167 [S. N. Dmitrieva, M. V. Churakova, N. A. Kurchavov, A. I. Vedernikov, L. G. Kuz'mina, A. Ya. Freidzon, A. A. Bagatur'yants, Yu. A. Strelenko, J. A. K. Howard, S. P. Gromov, Russ. Chem. Bull. (Int. Ed.), 2010, **59**, 1192].
- 51. С. Н. Дмитриева, М. В. Чуракова, Н. А. Курчавов, А. И. Ведерников, А. Я. Фрейдзон, С. С. Басок, А. А. Багатурьянц, Ю. А. Стреленко, С. П. Громов, *Журн. орган. химии*, 2011, 47, 1081 [S. N. Dmitrieva, M. V. Churakova,

N. A. Kurchavov, A. I. Vedernikov, A. Ya. Freidzon, S. S. Basok, A. A. Bagatur'yants, Yu. A. Strelenko, S. P. Gromov, *Russ. J. Org. Chem. (Engl. Transl.)*, 2011, **47**, 1101].

- 52. N. A. Kurchavov, A. I. Vedernikov, S. N. Dmitrieva, L. G. Kuz'mina, S. P. Gromov, *VII Int. Symp. «Design and Synthesis of Supramolecular Architectures» (Kazan, October 6–10, 2014)*, Kazan, 2014, 591.
- 53. С. Н. Дмитриева, Н. И. Сидоренко, А. И. Ведерников, Л. Г. Кузьмина, Дж. А. К. Ховард, Т. М. Буслаева, С. П. Громов, Изв. АН. Сер. хим., 2007, 958 [S. N. Dmitrieva, N. I. Sidorenko, A. I. Vedernikov, L. G. Kuz´mina, J. A. K. Howard, T. M. Buslaeva, S. P. Gromov, Russ. Chem. Bull. (Int. Ed.), 2007, 56, 993].
- 54. Л. Г. Кузьмина, А. И. Ведерников, С. Н. Дмитриева, Дж. А. К. Ховард, С. П. Громов, Изв. АН. Сер. хим., 2007, 967 [L. G. Kuz'mina, A. I. Vedernikov, S. N. Dmitrieva, J. A. K. Howard, S. P. Gromov, Russ. Chem. Bull. (Int. Ed.), 2007, 56, 1003].
- 55. Т. М. Буслаева, Е. А. Крылова, Е. В. Волчкова, С. П. Громов, С. Н. Дмитриева, Н. И. Сидоренко, Изв. вузов. Цветная металлургия, 2009, 28 [Т. М. Buslaeva, Е. А. Krylova, E. V. Volchkova, S. P. Gromov, S. N. Dmitrieva, N. I. Sidorenko, Russ. J. Non-Ferrous Metals (Engl. Transl.), 2009, 50, 461].
- 56. Е. А. Крылова, С. Н. Дмитриева, М. В. Алфимов, С. П. Громов, Т. М. Буслаева, М. Д. Прохоров, Е. В. Волчкова, Н. И. Сидоренко, Пат. РФ 2412737; Бюл. изобрет., 2011, 6.
- 57. S. N. Dmitrieva, N. I. Sidorenko, A. I. Vedernikov, N. A. Kurchavov, L. G. Kuz´mina, T. M. Buslaeva, S. S. Basok, A. K. Buryak, J. A. K. Howard, S. P. Gromov, *Mendeleev Commun.*, 2009, **19**, 21.
- S. N. Dmitrieva, N. I. Sidorenko, N. A. Kurchavov, A. I. Vedernikov, A. Ya. Freidzon, L. G. Kuz'mina, A. K. Buryak, T. M. Buslaeva, A. A. Bagatur'yants, Yu. A. Strelenko, J. A. K. Howard, S. P. Gromov, *Inorg. Chem.*, 2011, **50**, 7500.
- 59. С. Н. Дмитриева, Н. И. Сидоренко, А. И. Ведерников, С. П. Громов, *Изв. АН. Сер. хим.*, 2007, 1479 [S. N. Dmitrieva, N. I. Sidorenko, A. I. Vedernikov, S. P. Gromov, *Russ. Chem. Bull. (Int. Ed.)*, 2007, **56**, 1537].

- 60. Н. И. Сидоренко, Дис. канд. хим. наук, Московская государственная академия тонкой химической технологии им. М. В. Ломоносова, Москва, 2007, 165 с.
- 61. R. Crossley, Z. Goolamali, J. J. Gosper, P. G. Sammes, J. Chem. Soc., Perkin Trans. 2, 1994, 513.
- 62. T. Tozawa, Y. Misawa, S. Tokita, Y. Kubo, *Tetrahedron Lett.*, 2000, **41**, 5219.
- 63. S. N. Dmitrieva, M. V. Churakova, A. I. Vedernikov, L. G. Kuz´mina, S. P. Gromov, *Tetrahedron*, 2011, 67, 2530.
- 64. С. П. Громов, М. В. Чуракова, С. Н. Дмитриева, Изв. АН. Сер. хим., 2005, 797 [S. P. Gromov, M. V. Churakova, S. N. Dmitrieva, Russ. Chem. Bull. (Int. Ed.), 2005, 54, 814].
- 65. С. П. Громов, С. Н. Дмитриева, Е. Н. Ушаков, В. А. Лившиц, А. И. Ведерников, В. П. Цыбышев, Н. А. Курчавов, С. Ю. Зайцев, М. В. Алфимов, Пат. РФ 2398800; Бюл. изобрет., 2010, 25.
- 66. S. P. Gromov, S. N. Dmitrieva, A. I. Vedernikov, N. A. Kurchavov, L. G. Kuz'mina, S. K. Sazonov, Yu. A. Strelenko, M. V. Alfimov, J. A. K. Howard, E. N. Ushakov, J. Org. Chem., 2013, 78, 9834.
- 67. С. П. Громов, А. И. Ведерников, Н. А. Лобова, Л. Г. Кузьмина, С. Н. Дмитриева, О. В. Тихонова, М. В. Алфимов, Пат. РФ 2278134; Бюл. изобрет., 2006, 17.
- 68. S. P. Gromov, A. I. Vedernikov, N. A. Lobova, L. G. Kuz´mina, S. N. Dmitrieva, Yu. A. Strelenko, J. A. K. Howard, J. Org. Chem., 2014, 6768.
- E. N. Ushakov, M. V. Alfimov, S. P. Gromov, Macroheterocycles, 2010, 3, 189.
- 70. В. В. Бондаренко, С. Ю. Зайцев, М. С. Царькова, Е. А. Варламова, М. А. Кордонская, И. Н. Староверова, Е. В. Тульская, С. Н. Дмитриева, С. П. Громов, М. В. Алфимов, Изв. вузов. Химия и хим. технология, 2007, 50, 25.
- 71. С. П. Громов, С. Н. Дмитриева, И. С. Зайцев, С. Ю. Зайцев, А. Н. Тимонин, М. С. Царькова, Изв. вузов. Химия и хим. технология, 2011, 54, 29.

Поступила в редакцию 3 декабря 2014; после доработки — 2 апреля 2015